
Exhaustive search, backtracking, object-oriented Queens

Check out from SVN:
 Queens

 Doublets Partner evaluation due Thursday at
5:00 PM

 Teams for EditorTrees project
◦ There will be a few updates to the assignment

document in the next couple of days.
 Exhaustive search, backtracking,

and object-oriented queens

Exam 2 1 week from today:
7:00-9:00 PM

Brief description
Meet your team

 In general, implementation of a Data
Structure is separate from application.

 Most CSSE 230 projects have used existing
data structures to create an application

 In this project you will create an efficient data
structure that could be used in a text editor.

 But you will not create an application that
uses it.

 EditTree: A height-balanced (but not AVL)
binary tree with rank. Insertion and deletion
are by position, not by natural ordering of the
inserted elements.

 Log N Operations include
◦ Insert, delete, find, concatenate, split, height, size

 Node fields include balance code and rank.

 See schedule page

Meet your partners to plan when you will meet to begin work.

Suggestion: Meet before tomorrow to discuss the project requirements.
Formulate a list questions to ask during next class.

Whether or not you meet before next class, read the EditorTrees
requirements and come with questions.

A taste of artificial intelligence

Check out Queens from SVN

 Given: a (large) set of possible solutions to a
problem

 Goal: Find all solutions (or an optimal
solution) from that set

 Questions we ask:
◦ How do we represent the possible solutions?
◦ How do we organize the search?
◦ Can we avoid checking some obvious non-

solutions?

The “search space”

 Examples: Doublets, solving a maze,
the “15” puzzle.

 Taken from:
◦ http://www.cis.upenn.edu/~matuszek/cit594-

2004/Lectures/38-backtracking.ppt

http://www.cis.upenn.edu/~matuszek/cit594-2004/Lectures/38-backtracking.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2004/Lectures/38-backtracking.ppt

start ?

?
dead end

dead end

?
?

dead end

dead end

?

success!

dead end http://www.cis.upenn.ed
u/~matuszek/cit594-
2004/Lectures/38-
backtracking.ppt

http://www.cis.upenn.edu/~matuszek/cit594-2004/Lectures/38-backtracking.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2004/Lectures/38-backtracking.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2004/Lectures/38-backtracking.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2004/Lectures/38-backtracking.ppt

◦ In how many ways can N chess queens
be placed on an NxN grid, so that none
of the queens can attack any other
queen?

◦ I.e. there are not two queens on the
same row, same column, or same
diagonal.

 There is no "formula"

for generating a solution.

 The famous computer scientist Niklaus
Wirth described his approach to the
problem in 1971: Program Development by
Stepwise Refinement
http://sunnyday.mit.edu/16.355/wirth-
refinement.html#3

http://en.wikipedia.org/wiki/Queen_(chess)

http://sunnyday.mit.edu/16.355/wirth-refinement.html
http://sunnyday.mit.edu/16.355/wirth-refinement.html

 In how many ways can N chess queens be
placed on an NxN grid, so that none of the
queens can attack any other queen?
◦ I.e. no two queens on the same row, same column,

or same diagonal.

Two minutes
No Peeking!

 Very naive approach. Perhaps stupid is a better
word!
There are N queens, N2 squares.

 For each queen, try every possible square,
allowing the possibility of multiple queens in the
same square.
◦ Represent each potential solution as an N-item array of

pairs of integers (a row and a column for each queen).
◦ Generate all such arrays (you should be able to write

code that would do this) and check to see which ones are
solutions.

◦ Number of possibilities to try in the NxN case:
◦ Specific number for N=8:

281,474,976,710,656

1

Slight improvement. There are N queens, N2
squares. For each queen, try every possible
square, notice that we can't have multiple
queens on the same square.

◦ Represent each potential solution as an N-item

array of pairs of integers (a row and a column for
each queen).
◦ Generate all such arrays and check to see which

ones are solutions.
◦ Number of possibilities to try in NxN case:
◦ Specific number for N=8:

 178,462,987,637,760
 (vs. 281,474,976,710,656)

 Slightly better approach. There are N queens, N
columns. If two queens are in the same column, they
will attack each other. Thus there must be exactly one
queen per column.

 Represent a potential solution as an N-item array of
integers.
◦ Each array position represents the queen in one column.
◦ The number stored in an array position represents the row of

that column's queen.
◦ Show array for 4x4 solution.
 Generate all such arrays and check to see which ones are

solutions.
 Number of possibilities to try in NxN case:
 Specific number for N=8: 16,777,216

 Still better approach There must also be
exactly one queen per row.

 Represent the data just as before, but notice
that the data in the array is a set!
◦ Generate each of these and check to see which ones

are solutions.
◦ How to generate? A good thing to think about.
◦ Number of possibilities to try in NxN case:
◦ Specific number for N=8:

40,320

 Backtracking solution
 Instead of generating all permutations of N

queens and checking to see if each is a
solution, we generate "partial placements" by
placing one queen at a time on the board

 Once we have successfully placed k<N
queens, we try to extend the partial solution
by placing a queen in the next column.

 When we extend to N queens, we have a
solution.

 Play the game:
◦ http://homepage.tinet.ie/~pdpals/8queens.htm

 See the solutions:
◦ http://www.dcs.ed.ac.uk/home/mlj/demos/queens

http://homepage.tinet.ie/~pdpals/8queens.htm
http://www.dcs.ed.ac.uk/home/mlj/demos/queens

>java RealQueen 5
SOLUTION: 1 3 5 2 4
SOLUTION: 1 4 2 5 3
SOLUTION: 2 4 1 3 5
SOLUTION: 2 5 3 1 4
SOLUTION: 3 1 4 2 5
SOLUTION: 3 5 2 4 1
SOLUTION: 4 1 3 5 2
SOLUTION: 4 2 5 3 1
SOLUTION: 5 2 4 1 3
SOLUTION: 5 3 1 4 2

 Board configuration represented by a linked
list of Queen objects

Fields of RealQueen:

column

row

neighbor

Designed by Timothy Budd
http://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info/slides/chap06/java.htm

2-5

http://web.engr.oregonstate.edu/~budd/Books/oopintro3e/info/slides/chap06/java.htm

 Each queen sends messages directly to its
immediate neighbor to the left (and
recursively to all of its left neighbors)

 Return value provides information concerning
all of the left neighbors:

 Example: neighbor.canAttack(currentRow, col)
◦ Message goes to the immediate neighbor, but the

real question to be answered by this call is
◦ "Hey, neighbors, can any of you attack me if I place

myself on this square of the board?"

 findFirst()
 findNext()
 canAttack(int row, int col)

6-10

Your job (part of WA6):
Understand the job of each of these methods

Javadoc from the Queen interface can help
Fill in the (recursive) details in the RealQueen class
Debug

More details on next slide

1. Queen asks its neighbors to find the first position
in which none of them attack each other
◦ Found? Then queen tries to position itself so that it

cannot be attacked.
2. If the rightmost queen is successful, then a

solution has been found! The queens cooperate
in recording it.

3. Otherwise, the queen asks its neighbors to find
the next position in which they do not attack
each other

4. When the queens get to the point where there is
no next non-attacking position, all solutions
have been found and the algorithm terminates

	CSSE 230 Day 16
	Questions
	Announcements and Agenda
	EditorTrees project
	EditorTrees project
	EditorTrees Teams
	Exhaustive Search and Backtracking
	Exhaustive search
	In backtracking, we always try to extend a partial solution
	In backtracking, we picture the search as a tree and explore it using a pre-order traversal
	The non-attacking chess queens problem is a famous example
	With a partner, discuss "possible solution" search strategies
	Search Space Possibilities 1/5
	Search Space Possibilities 2/5
	Search Space Possibilities 3/5
	Search Space Possibilities 4/5
	Search Space Possibilities 5/5
	Experimenting with 8 x 8 Case
	Program output:
	The Linked List of Queen Objects
	Outline of the algorithm
	Queen Methods
	More algorithm outline

