
Binary Search Tree intro
BST with order properties

Check out BST_2013 project from
SVN

 Hardy/Colorize Partner Evaluation
 Doublets Partner Preference survey

Exam, Displayable, WA4, …

 Want to prove some properties about trees
 Weak induction isn’t enough
 Need strong induction instead: The former

governor of
California

 To prove that p(n) is true for all n >= n0:
◦ Prove that p(n0) is true, and
◦ For all k > n0, prove that if we assume

p(j) is true for n0 ≤ j < k, then p(k) is also true

 Weak induction uses the previous domino to
knock down the next

 Strong induction uses a whole box of
dominoes!

 Notation:
◦ Let T be a tree
◦ Write h(T) for the height of the tree, and
◦ N(T) for the size (i.e., number of nodes) of the tree

 Given h(T), what are the bounds on N(T)?

 Given N(T), what are the bounds on h(T)?

Q3-5

 A tree with the maximum number of nodes for
its height is a full tree.
◦ Its height is O(log N)

 A tree with the minimum number of nodes for
its height is essentially a .
◦ Its height is O(N)

 Height matters!
◦ We will see that the algorithms for search, insertion,

and deletion in a Binary search tree are O(h(T))

Q6-7

Binary Trees that store
elements in increasing
order

 A BST is a Binary Tree T with these properties:
1. Elements are Comparable, and non-null
2. No duplicate elements
3. All elements in T’s left subtree are less than the

root element
4. All elements in T’s right subtree are greater than

the root element
5. Both subtrees are BSTs

 Advantage: Lookup of items is O(height(T))
 What does the inorder traversal of a BST yield?

Q1

Draw a "birthday BST"

public class BinarySearchTree<T extends Comparable<T>> {

 private BinaryNode<T> root;

 public BinarySearchTree() {
 this.root = null;
 }

 // insert obj, if not already there
 public void insert(T obj)

 // Does this tree contain obj?
 public boolean contains(T obj)

 // delete obj, if it's there
 public void delete(T obj)

Q2-5

Quick preview of a WA5
problem

We won't do this today, but
the slides are here in case you
want to get an early start on
the problem

We use the "unused" null pointers to
point to a node's inorder successor (right
thread) and inorder predecessor (left
thread)

Explore the concept
How do Find and Insert work?

 What’s the performance of
 insertion?
 deletion?
 find?
 iteration?

 What about finding the kth smallest element?

 Gives the in-order position of this node
within its own subtree
◦ i.e., the size of its left subtree

 How would we do findKth?
 How about insert?
 delete?

0-based
indexing

Q6-8

	CSSE 230 Day 12
	Announcements
	Questions?
	Time out for math!
	Strong Induction
	Size and Height of Binary Trees
	Extreme Trees
	Binary Search Trees
	A Binary Search Tree (BST) allows easy and fast lookup of its items because it keeps them ordered
	BST insert, contains, and delete are different �than in a regular binary tree
	Threaded BST
	Threaded BST
	BST with Rank
	BSTs are an efficient way to represent ordered lists
	We can find the kth smallest element easily �if we add a rank field to BinaryNode

