CSSE 230 Day 10
BINARY

SLU DOkU Binary Tree Iterators
and Properties

Displayable Binary Trees

Upcoming due dates: see schedule

» Exam 1
» Hardy/Colorize, partner evals, too.

» WA4 due
» Displayable Binary Tree

Announcements

» Exam 1 Tonight 7-9 PM
> 0-269 (Sec 1), O-267 (Sec 2)

» Hardy/Colorize Partner Evaluation
due Friday at 5 PM

» WA4 due Friday at 8:00 AM
» Displayable due Tuesday, April 9 at 8 AM

p—

Exam Announcements

» Exam 1
- Coverage:
- Everything from reading and lectures, Sessions
1-9
- Programs through Hardy + Colorize
- Written assignments 1-3 No devices with
- Allowed resources: headphones or

earbuds are

- Written part: One side of one 8.5 x 11
allowed

sheet of paper
- Programming part:
- Textbook
- Eclipse (including programs in your repositories)
- Course web pages and materials on ANGEL
- Java APl documentation
> A previous 230 Exam 1 is available on ANGEL

Exam 1 Possible Topics

» Sessions 1-11
o Terminology

O

O

O

MCSS

OOP and inheritance
Growable Arrays

Homework and
Programs

Big-oh, Big-Omega,
and Big-Theta

Limits and asymptotic
behavior

Basic data structures

Comparable and
Comparator

O

O

O O O O

O

Finite State Machines

Recursion, stack
frames

Recursive binary search
Binary trees
Binary tree traversals

Size vs. height for
binary trees

Binary Search Tree
basics

No induction problems
yet.

Agenda

» Binary Tree iterators

» Another induction example
» WA4 hints, questions

» Displayable Binary Trees

» # of nodes in Binary tree with height h

tree one-a
just printing all o

Implementing Binary Tree Iterators

» What methods does an iterator typically
provide?
- Weiss uses: first, isValid, advance, retrieve
» In what order should we return the elements?

» What instance variables do we need?

» How do we get to the first item in:
> a pre-order traversal?
> an in-order traversal?
- a post-order traversal?

Weiss’s Implementation

» See TestTreelterators in the Displayable
project.

» Most of the code is on the next slides.

p—

Treelterator abstract class

s Treelterator class: maintains "current position”
&

S COMNSRTRUCTION: with tree to which i1terator i1s bound
s

Ao kxxxxxxxxAxXxXxXxXXxXxXXPIIEL T OPERAT T OIS % 3 3 3 36 3 36 36 3 36 3 3 36 36 3 3 3 3 36 3% XX

A first and advance are abstract: others are final

S boolean 1sWalid() --» True 1f at walid position in tree
< Ohject retrieve() --» KReturn i1tem 1n current position
S wold first() -—-» Bet current position to first

S wold advance ([) --» Advance (prefix)

A REEREXRNENRNENRNXEXEXER RS 3 3 3 36 3 36 36 3 36 36 3 3 3 3 36363 I NN ENENER

s Exceptions thrown for i1llegal access or advance

Treelterator fields and methods

protected Binarviree t; 28 Tree
protected Binarviode current: S Current positilon

puhlic Treelterator|(Binarylree thelree |

t = thelrees:
current = null;

t

abhstract public wvoid first(1:

tinal public boolean 1sValid({ | |

return current = null:

h

final public Object retrieve(|
1t current == null)

throw new HNobuchElementException():
return current.getElement();

'

abhstract public void advance|):

AR TN~. -

Preorder: constructor and first

private stack s s atack of Treebode objects

puhlic PreUrder(BinarvIree thelrese) {
super(theTree J:
= = new Arrayvotaclk();
=.pushi(thelree.getBEoot{ 1 1:

h

public vold firsti()1 {
s . .makeEmptv()
1t t.getRoot({) = null]
Ss.push(t.getRoot{ 1 J:
try
{ advance| 1: }
catch({ HNosuchElementEzception e) { } 2 Empty tree

PreOrder: advance

public wvoild advance() {
if{ s.isEmptvi 1) 1

1t [current == null)
throw new HNobuchElementExceptioni):
current = null;
return;
h
current = | Bilnarviode | s.topAndPopi()
1f [current.getRight{] = null]
S.push({ current.getBEight(1):
1f [current.getleft() |= null]

=.push({ current.getleft{]):

LevelOrder: constructor and first

private Queus q; S Juene of Treebode objects
puhlic LevellOrder|(BinarvIree thelres | 1
super(thelree];
= new ArraylJusue(;

g .enguelts | t.getRoot(1);
I

public wvold first

) A
g .makeEmpty(:
[
[

1t [t.getEoot
q.enguales

1 = null]
t.getRoot{ 1):
try
I advance| 1: }
catch({ HosuchElementEzception e) | } 2 Empty Lree

Preorder: constructor and first

private Stack s=: A omtack of Treelode objects

public PreOrder(Binarviree thelree |1 {
super(thelTree
s = new Arravotack():
s.push(theTree.getRoot{) 1:

'

public wvoid firsti() {
s . .makeEmptyvi(J:
1t t.getRFoot(1 I= null)
s.push({ t.getRoot(1 1:
LTy
! adwvance(1
catch(NosuchElementException &) { } 7 Empty tree

R T~ Tl

LevelOrder: advance

public void advance|) {
if{ g.isEmptv()) {

1f [current == null]
throw new NosuchElementExceptioni):
current = null:
Treturn:
h
current = [Binarvhode |1 g.degqueue(:
1t [current.getleft)) != null]
g.engqueuse | current.getlett(1 1;
1t [current.getHight{) I= null)

g .engqueue | current.getBight{ 1 J:

PreOrder: advance

public wvoild advance() {
if{ s.isEmptvi 1) 1

1t [current == null)
throw new HNobuchElementExceptioni):
current = null;
return;
h
current = | Bilnarviode | s.topAndPopi()
1f [current.getRight{] = null]
S.push({ current.getBEight(1):
1f [current.getleft() |= null]

=.push({ current.getleft{]):

The Stack in a PostOrder iterator

D

a1l

o~
O ©

a 2

N N
- O ”

N N
O m©

— NN
QO ([

— N
O ©

S N
- O "

N — o
v OV (T

i —
O T

™ —
O (T

S
O ([

S — N
v OV ©

a0

S N
O (T

Alternative:

» Each node can store pointer to the next node
in a traversal

» Must update extra info in constant time as
tree changes

An upcoming written

assignment will include
these “threaded binary
trees”

Wouldn’t it be nice?

» If we did not have to maintain the stack for
these iterators?

» If we could somehow “tap into” the stack used
in the recursive traversal?

- |l.e. Take a “snapshot of that call stack, and restore
it later when we need it.
> This is called a

- A big subject in the PLC course, CSSE 304

Python Makes This Easy

class BinaryTreeNode:
def __init__(self, element, left, right):
self.element = element

self.left = left
self.right = right

def postorder(self):
if self.left != None:
for e in self.left.postorder():
yield e
if self.right != None:
for e in self.right.postorder():
yield e

yield self.element

A lightweight form
f continuation

t = BinaryTree(...)

print "Post-order:"

for e in t.postorder():
print e

Another induction proof

» Show by induction that n(n+1)(n+2)is
divisible by 6 for all non-negative integers n.

Q2

WA4, Problem 2 Application

» Railroad switching

D),C)B A

» Problem is
equivalent to

counting the number

of possible orders
the cars can leave

the station

General Approach to
Puzzle Problems

» Make up tiny examples like the given problem
> No really tiny, I’'m serious

» Solve the tiny problem
» Solve a slightly larger problem
» Solve a slightly larger problem than that

» Once you see the pattern, then try to solve
the given problem

What’s the smallest problem like
this?

» In how many
possible orders
can the cars leave
the station?

D),C)B A

p—

Displayable Binary Trees

» Some suggestions

Displayable Binary Tree is an individual assignment

» Check out Displayable from your individual repo.

» If you get errors on the Weiss imports like

import weiss.nonstandard.Stack;

then install the Weiss packages now (see link from today
on Schedule page)

» Should be no errors.
» If errors, see next slide.

i — |
. Problems &5 . @ Javad

O errors, 69 warnings, 0 other
- Dwescription
& Warnings (69 iterns)

Troubleshooting the Weiss install

» Close all Eclipse projects except Displayable
» Did you put jars in the right folder?
» Are the jars and not zips?

» Is Eclipse using that JRE?

- See Windows - Preferences,
then Java 2> Installed JREs -> Edit.

> They should be in that list.

Get help now if you’re stuck.

Help others if you aren’t.

Displayable Binary Trees Steps

» Solve the sub-problems in this order:

o BuildTree.preOrderBuild()

- BinaryTree.inOrder()
> Graphics

» Run CheckDisplaybleBinaryTree to test
- Doesn’t use JUnit
> Tests preOrderBui ld and 1nOrder first
- Prompts for test case for which to display graphics
- Each tree should be displayed in a separate window.

Better Exception Reporting in
CheckDisplayableBinaryTrees

» Add a stack trace in main()

70 tp.dbTree.display();

71 } catch (InternalError e) {

72 System. out

73 printin("You must 1

5
6 }
7 } catch (Exception e) {

=4[]] [

J e e B e |

| |
Tl v

Efﬁ??ﬁEEEEEkTracE{);

&2 }

84= private static 5tring inOrder(int index) {

preOrderBuild Hints

» Like WA4, problem 3

» Consider:
chars = ‘ROSEHULMAN’
o children = ‘22002RORLO0O’

p—

inOrder Hints

» The iterators in TestTreelterators.java are there
for a reason!

» Recall how we can use Weiss iterators in a for
loop:

o for(iter.first();iter.isValid() ;iter.advance()) {

Object elem = iter.retrieve();
// ... do something with elem ...

Graphics Hints

» Suggested order for your graphics work:
> Figure out how to calculate node locations
- Get code to display correctly sized windows
- Add code to draw nodes
- Add code to draw lines
- Only work on arrow heads if all the rest works!

Binary Tree: Recursive definition

» A Binary Tree is either
- empty, or
> consists of:

- a distinguished node called the root, which contains
an element, and two disjoint subtrees

- A left subtree T, which is a binary tree

- A right subtree Tg, which is a binary tree ‘

Time out for math!

» Want to prove some properties about trees
» Weak induction isn’t enough

» Need strong induction instead: The former
SRk F- s " governor of
P> California

Strong Induction

» To prove that p(n) is true for all n >= n,:
> Prove that p(n,) is true, and

> For all k > n,, prove that if we assume
p(j) is true for n, < j < k, then p(k) is also true

» Weak induction uses the previous domino to
knock down the next

» Strong induction uses a whole box of
dominoes!

Q3-5
Size and Height of Binary Trees

» Notation:

- Let T be a tree
- Write h(T) for the height of the tree, and
> N(T) for the size (i.e., number of nodes) of the tree

» Given h(T), what are the bounds on N(T)?

» Given N(T), what are the bounds on h(T)?

Q6-7
Extreme Trees

» A tree with the maximum number of nodes for
its height is a full tree.
> Its height is O(log N)

» A tree with the minimum number of nodes for
its height is essentially a
> Its height is O(N)

» Height matters!

- We will see that the algorithms for search, insertion,
and deletion in a Binary search tree are O(h(T))

Merge Method (from Weiss chapter
18)

» /** Replaces the root element of this
* tree with the given 1tem and the
* subtrees with the given ones.
*/
pub71c void merge(T rootItem,
BinaryTree<T> left,
BinaryTree<T> right)

» Simple approach:
o this.root = new BinaryTreeNode<T>(rootItem,

left. root,
What could go wrong?

right.root);

Problems With Naive Merge

» A node should be part of one and only one
tree.

root figure 18.14

-

Result of a naive

- merge operation:
Subtrees are shared.
tl. rou\t‘ ‘/tyout

old root
old tl.root

A
%

tl is also the current
object.

t2.root

1 e

ANWA

figure 18.15 root
Aliasing problems in tl.root
the merge operation; \

Correct Merge Method

1 f‘h‘*

2 * Merge routine for BinaryTree class.

3 * Forms a new tree from rootItem, tl and t2.

4 * Does not allow tl and t2 to be the same.

- * Correctly handles other aliasing conditions.

6 */

7 public void merge(AnyType rootItem,

8 BinaryTree<AnyType> tl, BinaryTree<AnyType> t2)
9 {

10 if(tl.root == t2.root && tl.root != null)

11 throw new I1TegalArgumentException();

12

13 // Allocate new node

14 root = new BinaryNode<AnyType>(rootItem, tl.root, t2.root);
15

16 // Ensure that every node is in one tree

17 if(this != t1)

18 tl.root = null;

19 if(this !'= t2)
20 t2.root = null; ; ;
o1 } Weiss, figure 18.16

T~ -

	CSSE 230 Day 10
	Upcoming due dates: see schedule
	Announcements
	Exam Announcements
	Exam 1 Possible Topics
	Agenda
	Binary Tree Iterators
	Implementing Binary Tree Iterators
	Weiss’s Implementation
	TreeIterator abstract class
	TreeIterator fields and methods
	Preorder: constructor and first
	PreOrder: advance
	LevelOrder: constructor and first
	Preorder: constructor and first
	LevelOrder: advance
	PreOrder: advance
	The Stack in a PostOrder iterator
	Other Approaches to Tree Iterators
	Alternative:
	Wouldn’t it be nice?
	Python Makes This Easy
	Induction practice
	Another induction proof
	Tips on WA4
	WA4, Problem 2 Application
	General Approach to �Puzzle Problems
	What’s the smallest problem like this?
	Displayable Binary Trees
	Displayable Binary Tree is an individual assignment
	Troubleshooting the Weiss install
	Displayable Binary Trees Steps
	Better Exception Reporting in CheckDisplayableBinaryTrees
	preOrderBuild Hints
	inOrder Hints
	Graphics Hints
	More Binary Trees
	Size vs. Height�in Binary Trees
	Binary Tree: Recursive definition
	Time out for math!
	Strong Induction
	Size and Height of Binary Trees
	Extreme Trees
	Merge Method (from Weiss chapter 18)
	Problems With Naïve Merge
	Correct Merge Method

