CSSE 230 Day 10
BINARY

SLU DOkU Binary Tree Iterators
and Properties

Displayable Binary Trees




Upcoming due dates: see schedule

» Exam 1
» Hardy/Colorize, partner evals, too.

» WA4 due
» Displayable Binary Tree




Announcements

» Exam 1 Tonight 7-9 PM
> 0-269 (Sec 1), O-267 (Sec 2)

» Hardy/Colorize Partner Evaluation
due Friday at 5 PM

» WA4 due Friday at 8:00 AM
» Displayable due Tuesday, April 9 at 8 AM
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Exam Announcements

» Exam 1
- Coverage:
- Everything from reading and lectures, Sessions
1-9
- Programs through Hardy + Colorize
- Written assignments 1-3 No devices with
- Allowed resources: headphones or

earbuds are

- Written part: One side of one 8.5 x 11
allowed

sheet of paper
- Programming part:
- Textbook
- Eclipse (including programs in your repositories)
- Course web pages and materials on ANGEL
- Java APl documentation
> A previous 230 Exam 1 is available on ANGEL




Exam 1 Possible Topics

» Sessions 1-11
o Terminology

O

O

O

MCSS

OOP and inheritance
Growable Arrays

Homework and
Programs

Big-oh, Big-Omega,
and Big-Theta

Limits and asymptotic
behavior

Basic data structures

Comparable and
Comparator

O

O

O O O O

O

Finite State Machines

Recursion, stack
frames

Recursive binary search
Binary trees
Binary tree traversals

Size vs. height for
binary trees

Binary Search Tree
basics

No induction problems
yet.



Agenda

» Binary Tree iterators

» Another induction example
» WA4 hints, questions

» Displayable Binary Trees

» # of nodes in Binary tree with height h




tree one-a
just printing all o




Implementing Binary Tree Iterators

» What methods does an iterator typically
provide?
- Weiss uses: first, isValid, advance, retrieve
» In what order should we return the elements?

» What instance variables do we need?

» How do we get to the first item in:
> a pre-order traversal?
> an in-order traversal?
- a post-order traversal?




Weiss’s Implementation

» See TestTreelterators in the Displayable
project.

» Most of the code is on the next slides.

p—



Treelterator abstract class

s Treelterator class: maintains "current position”
&

S COMNSRTRUCTION: with tree to which i1terator i1s bound
s

Ao kxxxxxxxxAxXxXxXxXXxXxXXPIIEL T OPERAT T OIS % 3 3 3 36 3 36 36 3 36 3 3 36 36 3 3 3 3 36 3% XX

A first and advance are abstract: others are final

S boolean 1sWalid( ) --» True 1f at walid position in tree
< Ohject retrieve( ) --» KReturn i1tem 1n current position
S wold first( ) -—-» Bet current position to first

S wold advance ([ ) --» Advance (prefix)
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s Exceptions thrown for i1llegal access or advance




Treelterator fields and methods

protected Binarviree t; 28 Tree
protected Binarviode current: S Current positilon

puhlic Treelterator|( Binarylree thelree |

t = thelrees:
current = null;

t

abhstract public wvoid first( 1:

tinal public boolean 1sValid({ | |

return current = null:

h

final public Object retrieve( |
1t current == null )

throw new HNobuchElementException( ):
return current.getElement( );

'

abhstract public void advance| ):

AR TN~. -




Preorder: constructor and first

private stack s s atack of Treebode objects

puhlic PreUrder( BinarvIree thelrese ) {
super( theTree J:
= = new Arrayvotaclk( );
=.pushi( thelree.getBEoot{ 1 1:

h

public vold firsti( )1 {
s . .makeEmptv( )
1t t.getRoot({ ) = null ]
Ss.push( t.getRoot{ 1 J:
try
{ advance| 1: }
catch({ HNosuchElementEzception e ) { } 2 Empty tree




PreOrder: advance

public wvoild advance( ) {
if{ s.isEmptvi 1 ) 1

1t [ current == null )
throw new HNobuchElementExceptioni ):
current = null;
return;
h
current = | Bilnarviode | s.topAndPopi( )
1f [ current.getRight{ ] = null ]
S.push({ current.getBEight( 1 ):
1f [ current.getleft( ) |= null ]

=.push({ current.getleft{ ] ):




LevelOrder: constructor and first

private Queus q; S Juene of Treebode objects
puhlic LevellOrder|( BinarvIree thelres | 1
super( thelree ];
= new ArraylJusue( ;

g .enguelts | t.getRoot( 1 );
I

public wvold first

) A
g .makeEmpty( :
[
[

1t [ t.getEoot
q.enguales

1 = null ]
t.getRoot{ 1 ):
try
I advance| 1: }
catch({ HosuchElementEzception e ) | } 2 Empty Lree




Preorder: constructor and first

private Stack s=: A omtack of Treelode objects

public PreOrder( Binarviree thelree |1 {
super( thelTree
s = new Arravotack( ):
s.push( theTree.getRoot{ ) 1:

'

public wvoid firsti( ) {
s . .makeEmptyvi( J:
1t t.getRFoot( 1 I= null )
s.push({ t.getRoot( 1 1:
LTy
! adwvance( 1
catch( NosuchElementException & ) { } 7 Empty tree

R T~ Tl



LevelOrder: advance

public void advance| ) {
if{ g.isEmptv( ) ) {

1f [ current == null ]
throw new NosuchElementExceptioni ):
current = null:
Treturn:
h
current = [ Binarvhode |1 g.degqueue( :
1t [ current.getleft) ) != null ]
g.engqueuse | current.getlett( 1 1;
1t [ current.getHight{ ) I= null )

g .engqueue | current.getBight{ 1 J:



PreOrder: advance

public wvoild advance( ) {
if{ s.isEmptvi 1 ) 1

1t [ current == null )
throw new HNobuchElementExceptioni ):
current = null;
return;
h
current = | Bilnarviode | s.topAndPopi( )
1f [ current.getRight{ ] = null ]
S.push({ current.getBEight( 1 ):
1f [ current.getleft( ) |= null ]

=.push({ current.getleft{ ] ):



The Stack in a PostOrder iterator
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Alternative:

» Each node can store pointer to the next node
in a traversal

» Must update extra info in constant time as
tree changes

An upcoming written

assignment will include
these “threaded binary
trees”



Wouldn’t it be nice?

» If we did not have to maintain the stack for
these iterators?

» If we could somehow “tap into” the stack used
in the recursive traversal?

- |l.e. Take a “snapshot of that call stack, and restore
it later when we need it.
> This is called a

- A big subject in the PLC course, CSSE 304




Python Makes This Easy

class BinaryTreeNode:
def __init__(self, element, left, right):
self.element = element

self.left = left
self.right = right

def postorder(self):
if self.left != None:
for e in self.left.postorder():
yield e
if self.right != None:
for e in self.right.postorder():
yield e

yield self.element

A lightweight form
f continuation

t = BinaryTree(...)

print "Post-order:"

for e in t.postorder():
print e







Another induction proof

» Show by induction that n(n+1)(n+2)is
divisible by 6 for all non-negative integers n.

Q2






WA4, Problem 2 Application

» Railroad switching

D),C)B A

» Problem is
equivalent to

counting the number

of possible orders
the cars can leave

the station




General Approach to
Puzzle Problems

» Make up tiny examples like the given problem
> No really tiny, I’'m serious

» Solve the tiny problem
» Solve a slightly larger problem
» Solve a slightly larger problem than that

» Once you see the pattern, then try to solve
the given problem




What’s the smallest problem like
this?

» In how many
possible orders
can the cars leave
the station?

D),C)B A
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Displayable Binary Trees

» Some suggestions




Displayable Binary Tree is an individual assignment

» Check out Displayable from your individual repo.

» If you get errors on the Weiss imports like

import weiss.nonstandard.Stack;

then install the Weiss packages now (see link from today
on Schedule page)

» Should be no errors.
» If errors, see next slide.

i — |
. Problems &5 . @ Javad

O errors, 69 warnings, 0 other
- Dwescription
& Warnings (69 iterns)




Troubleshooting the Weiss install

» Close all Eclipse projects except Displayable
» Did you put jars in the right folder?
» Are the jars and not zips?

» Is Eclipse using that JRE?

- See Windows - Preferences,
then Java 2> Installed JREs -> Edit.

> They should be in that list.

Get help now if you’re stuck.

Help others if you aren’t.



Displayable Binary Trees Steps

» Solve the sub-problems in this order:

o BuildTree.preOrderBuild()

- BinaryTree.inOrder()
> Graphics

» Run CheckDisplaybleBinaryTree to test
- Doesn’t use JUnit
> Tests preOrderBui ld and 1nOrder first
- Prompts for test case for which to display graphics
- Each tree should be displayed in a separate window.




Better Exception Reporting in
CheckDisplayableBinaryTrees

» Add a stack trace in main()

70 tp.dbTree.display();

71 } catch (InternalError e) {

72 System. out

73 printin("You must 1

5
6 }
7 } catch (Exception e) {

=4[] ] [

J e e B e |

| |
Tl v

Efﬁ??ﬁEEEEEkTracE{);

&2 }

84= private static 5tring inOrder(int index) {



preOrderBuild Hints

» Like WA4, problem 3

» Consider:
chars = ‘ROSEHULMAN’
o children = ‘22002RORLO0O’

p—



inOrder Hints

» The iterators in TestTreelterators.java are there
for a reason!

» Recall how we can use Weiss iterators in a for
loop:

o for(iter.first();iter.isValid() ;iter.advance()) {

Object elem = iter.retrieve();
// ... do something with elem ...




Graphics Hints

» Suggested order for your graphics work:
> Figure out how to calculate node locations
- Get code to display correctly sized windows
- Add code to draw nodes
- Add code to draw lines
- Only work on arrow heads if all the rest works!










Binary Tree: Recursive definition

» A Binary Tree is either
- empty, or
> consists of:

- a distinguished node called the root, which contains
an element, and two disjoint subtrees

- A left subtree T, which is a binary tree

- A right subtree Tg, which is a binary tree ‘




Time out for math!

» Want to prove some properties about trees
» Weak induction isn’t enough

» Need strong induction instead: The former
SRk F- s " governor of
P> California




Strong Induction

» To prove that p(n) is true for all n >= n,:
> Prove that p(n,) is true, and

> For all k > n,, prove that if we assume
p(j) is true for n, < j < k, then p(k) is also true

» Weak induction uses the previous domino to
knock down the next

» Strong induction uses a whole box of
dominoes!




Q3-5
Size and Height of Binary Trees

» Notation:

- Let T be a tree
- Write h(T) for the height of the tree, and
> N(T) for the size (i.e., number of nodes) of the tree

» Given h(T), what are the bounds on N(T)?

» Given N(T), what are the bounds on h(T)?




Q6-7
Extreme Trees

» A tree with the maximum number of nodes for
its height is a full tree.
> Its height is O(log N)

» A tree with the minimum number of nodes for
its height is essentially a
> Its height is O(N)

» Height matters!

- We will see that the algorithms for search, insertion,
and deletion in a Binary search tree are O(h(T))




Merge Method (from Weiss chapter
18)

» /** Replaces the root element of this
* tree with the given 1tem and the
* subtrees with the given ones.
*/
pub71c void merge(T rootItem,
BinaryTree<T> left,
BinaryTree<T> right)

» Simple approach:
o this.root = new BinaryTreeNode<T>(rootItem,

left. root,
What could go wrong?

right.root);



Problems With Naive Merge

» A node should be part of one and only one
tree.

root figure 18.14

-

Result of a naive

- merge operation:
Subtrees are shared.
tl. rou\t‘ ‘/tyout

old root
old tl.root

A
%

tl is also the current
object.

t2.root

1 e

ANWA

figure 18.15 root
Aliasing problems in tl.root
the merge operation; \




Correct Merge Method

1 f‘h‘*

2 * Merge routine for BinaryTree class.

3 * Forms a new tree from rootItem, tl and t2.

4 * Does not allow tl and t2 to be the same.

- * Correctly handles other aliasing conditions.

6 */

7 public void merge( AnyType rootItem,

8 BinaryTree<AnyType> tl, BinaryTree<AnyType> t2 )
9 {

10 if( tl.root == t2.root && tl.root != null )

11 throw new I1TegalArgumentException( );

12

13 // Allocate new node

14 root = new BinaryNode<AnyType>( rootItem, tl.root, t2.root );
15

16 // Ensure that every node is in one tree

17 if( this != t1 )

18 tl.root = null;

19 if( this !'= t2 )
20 t2.root = null; ; ;
o1 } Weiss, figure 18.16

T~ -
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