
Java Collections Framework
Intro to Trees

Checkout BinaryTrees from SVN

 Pascal partner evaluation due today at 5 PM
◦ ANGEL > Lessons > Dropboxes and Surveys > Surveys

 Hopefully you are close to finishing either
Hardy or Colorize by now and gotten a start
on the other one.
◦ If not, it is time to get moving!

Rose is teeming with teams

 No prima donnas
◦ Work together or divide work equitably
◦ Working way ahead, finishing on your own, or

changing the team’s work without discussion:
 is selfish
 harms the education of your teammates
 may result in a failing grade for you on the project

 No laggards
◦ Coasting by on your team’s work:
 is selfish
 harms your education
 may result in a failing grade for you on the project

 I’ll assign an overall grade to the project
 Grades of individuals will be adjusted up or

down based on team members’ assessments

 At the end of the project each of you will:
◦ Rate each member of the team, including yourself
◦ Write a short Performance Evaluation of each team

member

Excellent—Consistently went above and beyond: tutored teammates,
carried more than his/her fair share of the load

Very good—Consistently did what he/she was supposed to do, very
well prepared and cooperative

Satisfactory—Usually did what he/she was supposed to do, acceptably
prepared and cooperative

Ordinary—Often did what he/she was supposed to do, minimally
prepared and cooperative

Marginal—Sometimes failed to show up or complete tasks, rarely
prepared

Deficient—Often failed to show up or complete tasks, rarely prepared
Unsatisfactory—Consistently failed to show up or complete tasks,

unprepared
Superficial—Practically no participation
No show—No participation at all

 Ratings must be supported with evidence

 Performance evaluations document:
◦ Positives
◦ Key negatives

 Performance evaluations are standard
procedure in industry
◦ Why might that be the case?

 Document dates and actions:
◦ Jan. 1, stayed after mtg. to help Bob with hashing
◦ Jan. 19, failed to complete UML diagram as agreed

 List positives:
◦ The only way to help people improve!

 List key negatives:
◦ Not all negatives
◦ Egos are too fragile for long lists, can’t fix

everything at once anyway

 Keep a journal about the project

 I’ll grade your evaluations

 Your evaluations may be shared with the team
member being evaluated.

 Don’t keep your feelings to yourself

 Get me involved if your team can’t work out an
issue!

http://comics.com/frank&ernest/2010-12-13/

 Review: Java Collections Framework and
Iterators

 Introduction to trees

 Begin binary tree implementation (if there is
time)

 Today or tomorrow will include some time to
work on Hardy/Colorize.

Available, efficient, bug-free
implementations of many key data
structures

Most classes are in java.util

Q1

Weiss Chapter 6 has more
details about collections

 Done with an interface, e.g., java.util.Collection

A “factory
method”

Q2

 In Java, specified by java.util.Iterator<E>

 ListIterator<E> adds:

Q3

ag can be any Collection of Integers

In Java 1.5 we can simplify it even more.

Note that the Java compiler translates the latter code into the former.

 addAll(Collection other)

 containsAll(Collection other)

 removeAll(Collection other)

 retainAll(Collection other)

 toArray()

 Handy java.util.Arrays utility methods:

See
Collections
for similar
methods on
Lists

 weiss.util
◦ Shows "bare bones" possible implementations of

some of the classes in java.util
◦ Illustrates (just) the essence of what is involved in

implementation
 weiss.nonstandard
◦ Some other data structures, not found in
java.util
◦ Some alternate approaches to some classes that are

also in weiss.util

Q4

A link to installation instructions is in Day 9
of the schedule page; other links Day 8.

Introduction and terminology

 Class hierarchy tree (single inheritance only)
 Directory tree in a file system

 A collection of nodes
 Nodes are connected by directed edges.
◦ One special root node has no incoming edges
◦ All other nodes have exactly one incoming edge

 One way that Computer Scientists
are odd is that our trees
usually have their root at
the top!

Q5-7

 Parent
 Child
 Grandparent
 Sibling
 Ancestors and descendants
 Proper ancestors, proper descendants
 Subtree
 Leaf, interior node
 Depth and height of a node
 Height of a tree

Q8

Which is larger, the sum of
the heights or the sum of the
depths of all nodes in a tree?

The height of
a tree is the
height of its
root node.

Q9-14

 A Binary Tree is either
◦ empty, or
◦ consists of:
 a distinguished node called the root, which contains

an element, and
 A left subtree TL, which is a binary tree
 A right subtree TR, which is a binary tree

root

TL

TR

Let’s implement a
BinaryTree<T> class including
methods size(), height(),
duplicate(), and contains(T).

	CSSE 230 Day 8
	Announcements
	More Thoughts on Teaming
	Two Key Rules
	Grading of Team Projects
	Ratings
	Performance Evaluations
	How to Write a �Performance Evaluation
	Learning to Write �Performance Evaluations
	Questions?
	Agenda
	Java Collections Framework
	Java Collections: the essentials
	Specifying an ADT in Java
	What’s an iterator?
	Example: Using an Iterator
	Other Collection Methods
	Sort and Binary Search
	The weiss Packages
	Trees
	Trees in everyday (geek) life
	A General Tree—Global View
	Tree Terminology
	Node height and depth examples
	Binary Tree: Recursive definition
	Growing Trees

