
Recursion Again (and again …)

Check out from SVN: Recursion and Trees projects

 Student questions about anything!

 Hardy/ColorizeFSM
 Better MCSS algorithm
 Recursion review
 Recursion programming exercise

Note: The next seven days are likely to be the busiest of
the term in this course. Two medium-sized programs to
write, and challenging written problems. Start early
(especially on the programming projects).

 Do a slightly different Hardy calculation
 With certain space constraints
 Make it as fast as you can without violating

the problem constraints
◦ Mainly, that you can make no pre-assumptions

about the sizes of the numbers other than that they
are smaller than Java's longest long integer

 Carefully select data structures to use
 When you can correctly find nth Hardy

numbers, you are probably halfway done
◦ Then comes efficiency

 Lots of tools for writing to the html.
 One person already finished it.
 How should we implement the FSM?
◦ 3 choices

 2-Dimensional array:
◦ Rows indexed by state, Columns by input character.
◦ Each array entry is a pair object (as in DS Section 3.7):
 [next state, what to print]

 Monolithic controller with nested switch
statements

 Have a class for each state, that implements the
State interface.
◦ Choice # 1may have shorter code
◦ Choice #2 is probably easier to write and modify
◦ Choice #3 is most modular and aesthetic! We like it!

Diagrams
on the

whiteboard

Q7

 Plan when you'll be working
 Pair programming, but I suggest that each of

you take the "research lead" for one of the
programs

 Begin thinking about both

1. Base Case: Always have at least one case
that can be solved without recursion.

2. Make Progress: Every recursive call must
progress toward some base case.

3. “You gotta believe”: Always assume that the
recursive call does what it is supposed to
do.

◦ Use that result in building the “higher-level”
solution

Q1-3

public class ListNode<T> {
 T element;
 ListNode<T> next;

 public ListNode(T e,
 ListNode<T> n) {
 this.element = e;
 this.next = n;
 }

 public ListNode(T e) {
 this(e, null);
 }

 public ListNode() {
 this(null, null);
 }
}

public class LinkedList<T> {
private ListNode<T> head,
private ListNode<T> tail;

// lots of other stuff.
// Write a size() method.

}

Q4

 Each Fibonacci number (except the first two)
is the sum of the previous two Fibonacci
numbers.

 F0=0, F1=1, Fi+2 = Fi + Fi+1

i 0 1 2 3 4 5 6 7 8
Fi 0 1 1 2 3 5 8 13 21

 public static int fib(int n) {
 if (n < 2)
 return n;
 return fib(n-2) + fib(n-1);
 }

Easy to program!
Expensive!

public static int fib(int n) {
 if (n < 2)
 return n;
 return fib(n-2) + fib(n-1);
}

 Compound Interest rule: Don’t recursively
recompute the same things over and over in
separate recursive calls.

 Alternatives:
◦ Cache previously computed values in an array

(memoization)
◦ Use a loop

 This is a reminder from 220/221.

Q5, Q6

 Input: a string representation of a positive
integer

 Output: the integer
 …using recursion

Q7

 Input: an array of integers and an element for
which to search.

 Output: the index where it was found.
◦ -1 if not found

 Big-Oh runtime of binary search?

 The Towers of Hanoi puzzle was invented by the
French mathematician Edouard Lucas in 1883.

 We are given a tower of disks initially stacked in
decreasing size on one of three pegs

 The objective is to transfer the entire tower to one
of the other pegs,

 moving only one disk at a time and
 never placing a larger

disk on top of a
smaller disk

Image is from
http://www.cut-the-knot.com/recurrence/hanoi.html

Demo!

 Write the method (and its recursive helper)
 Analyze it: count the total moves required to

move n disks from one peg to another
◦ I.e., write and solve the recurrence relation

 Read assignment linked from schedule, WA3
 Check out Trees project from individual SVN

repository
 We will look at the code together

	CSSE 230 Day 7
	Agenda
	Hardy Part 2
	ColorizeFSM
	Possible Representations of the Finite State Machine
	You’ve met your partner
	Weiss’s Recursion Principles
	Recursive List Size
	Fibonacci Numbers
	The Trouble with Fib
	Weiss’s Fourth Recursion Principle
	Recursive ParseInt?
	Recursive binary search is elegant
	Famous Diversion - Towers of Hanoi�(a relevant interlude)
	Towers of Hanoi – hands on
	Towers of Hanoi
	Trees

