
Recursion Again (and again …) 

Check out from SVN: Recursion and Trees projects 



 Student questions about anything! 
 

 Hardy/ColorizeFSM 
 Better MCSS algorithm 
 Recursion review 
 Recursion programming exercise 

 
 
 
 
 
 
 
 

Note: The next seven days are likely to be the busiest of 
the term in this course.  Two medium-sized programs to 
write, and challenging written problems.  Start early 
(especially on the programming projects). 



 Do a slightly different Hardy calculation 
 With certain space constraints 
 Make it as fast as you can without violating 

the problem constraints 
◦ Mainly, that you can make no pre-assumptions 

about the sizes of the numbers other than that they 
are smaller than Java's longest long integer 

 Carefully select data structures to use 
 When you can correctly find nth Hardy 

numbers, you are probably halfway done 
◦ Then comes efficiency 



 Lots of tools for writing to the html. 
 One person already finished it. 
 How should we implement the FSM? 
◦ 3 choices 



 2-Dimensional array:  
◦ Rows indexed by state, Columns by input character. 
◦ Each array entry is a pair object (as in DS Section 3.7):   
 [next state, what to print] 

 Monolithic controller with nested switch 
statements 

 Have a class for each state, that implements the 
State interface. 
◦ Choice # 1may have shorter code 
◦ Choice #2 is probably easier to write and modify 
◦ Choice #3 is most modular and aesthetic! We like it! 

Diagrams 
on the 

whiteboard 

Q7 



 Plan when you'll be working 
 Pair programming, but I suggest that each of 

you take the "research lead" for one of the 
programs 

 Begin thinking about both 



1. Base Case: Always have at least one case 
that can be solved without recursion. 

2. Make Progress: Every recursive call must 
progress toward some base case. 

3. “You gotta believe”: Always assume that the 
recursive call does what it is supposed to 
do.   

◦ Use that result in building the “higher-level” 
solution 

Q1-3 



public class ListNode<T> { 
   T element; 
   ListNode<T> next; 
 
   public ListNode(T e,  
         ListNode<T> n) { 
      this.element = e; 
      this.next = n;       
   } 
    
   public ListNode(T e) { 
      this(e, null); 
   } 
    
   public ListNode() { 
      this(null, null); 
   } 
} 
 

public class LinkedList<T> { 
private ListNode<T> head,  
private ListNode<T> tail; 
 
 
// lots of other stuff. 
// Write a size() method. 
 
 
 
 
 
 
 
} 
 

Q4 



 Each Fibonacci number (except the first two) 
is the sum of the previous two Fibonacci 
numbers. 
 
 
 

 F0=0,  F1=1,  Fi+2 = Fi + Fi+1 
 

i 0 1 2 3 4 5 6 7 8 
Fi 0 1 1 2 3 5 8 13 21 

 public static int fib(int n) { 
  if (n < 2) 
   return n; 
  return fib(n-2) + fib(n-1); 
 } 



Easy to program! 
Expensive! 
 

public static int fib(int n) { 
 if (n < 2) 
  return n; 
 return fib(n-2) + fib(n-1); 
} 



 Compound Interest rule: Don’t recursively 
recompute the same things over and over in 
separate recursive calls. 
 

 Alternatives: 
◦ Cache previously computed values in an array 

(memoization) 
◦ Use a loop 

 
 This is a reminder from 220/221. 

 

Q5, Q6 



 Input: a string representation of a positive 
integer 

 Output: the integer 
 …using recursion 

Q7 



 Input: an array of integers and an element for 
which to search. 

 Output: the index where it was found.  
◦ -1 if not found 

 Big-Oh runtime of binary search? 
 



 The Towers of Hanoi puzzle was invented by the 
French mathematician Edouard Lucas in 1883.  

 We are given a tower of disks initially stacked in 
decreasing size on one of three pegs  

 The objective is to transfer the entire tower to one 
of the other pegs,  

 moving only one disk at a time and  
 never placing a larger  

disk on top of a  
smaller disk 

Image is from  
http://www.cut-the-knot.com/recurrence/hanoi.html 



Demo! 



 Write the method (and its recursive helper) 
 Analyze it: count the total moves required to 

move n disks from one peg to another 
◦  I.e., write and solve the recurrence relation 



 Read assignment linked from schedule, WA3 
 Check out Trees project from individual SVN 

repository 
 We will look at the code together 
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