I HAVE A COMPLAINT! SOMETIMES WHEN PEOPLE TALK ABOUT TECHNOLOGY YOU INSULT ME AND MY FRIENDS!

If SOFTWARE HAS A GLITCH, YOU SAY IT HAS A "BUG"!

WE DESERVE MORE RESPECT! I MYSELF AM AN ACCOMPLISHED WEB DESIGNER!

THAT WAS INCREDIBLE! A TECHIE DON'T SAY SPIDER!

OIT, ERNIE.

HE'S AN "ARACHNERD"!

CSSE 230 Day 5

Maximum Contiguous Subsequence Sum

Check out from SVN: MCSSRaces

Questions?

Agenda

- Finish Comparators
- Maximum Contiguous Subsequence Sum Problem
- Worktime for WA02 or Pascal?

Program Grading

- Correctness usually graded using JUnit tests - Exception: when we ask you to add your own tests
- Style
- No warnings remaining (per our preference file)
- Reasonable documentation
- Explanatory variable and method names
- You should format using Ctrl-Shift-F in Eclipse
- Efficiency
- Usually reasonable efficiency will suffice - (e.q., no apparently infinite loops)
- Occasionally (like next week) we might give a minimum big-Oh efficiency for you to achieve Between two implementations with the same big-Oh efficiency, favor the more concise solution, unless you have data showing that the difference matters.

The Comparator Example

See ComparatorExample in your repository

Uses a prime "function object" example:in Java:
Comparator
Add an anonymous Comparator to main()

Questions?

Maximum Contiguous Subsequence Sum

》) A deceptively deep problem with a surprising solution.

$$
\{-3,4,2,1,-8,-6,4,5,-2\}
$$

Why do we look at this problem?

- It's interesting
- Analyzing the obvious solution is instructive:
- We can make the program more efficient

A Nice Algorithm Analysis Example

- Problem: Given a sequence of numbers, find the maximum sum of a contiguous subsequence.

Consider:

- What if all the numbers were positive?

- What if they all were negative?
- What if we left out "contiguous"?

Formal Definition: Maximum Contiguous Subsequence Sum

Q2-4

Problem definition: Given a non-empty sequence of n (possibly negative) integers $A_{1}, A_{2}, \ldots, A_{n}$, find the maximum consecutive subsequence $S_{i, j}=\sum_{k=i}^{j} A_{k}$, and the corresponding values of i and j.

- $\operatorname{In}\{-2,11,-4,13,-5,2\}, S_{2,4}=$?
- In $\{1,-3,4,-2,-1,6\}$, what is MCSS?
, If every element is negative, what's the MCSS?

1 -based indexing

A quick-and-dirty algorithm

- Design one right now.
- Efficiency doesn't matter.
- It has to be easy to understand.
- 3 minutes
- Examples to consider:
- $\{-3,4,2,1,-8,-6,4,5,-2\}$
- $\{5,6,-3,2,8,4,-12,7,2\}$

First Algorithm

Find the sums of

 a/l subsequencespublic final class MaxSubTest \{
private static int seqStart $=0$;
private static int seqEnd $=0$;
/* First maximum contiguous subsequence sum algorithm.

* seqStart and seqEnd represent the actual best sequence.
*/
public static int maxSubSum1 (int [] a) \{
i: beginning of
subsequence int maxSum $=0$; subsequence for (int $i=0 ; i<a . l e n g t h ; i++$)
j: end of
subsequence

Analysis of this Algorithm

-What statement is executed the most often?
, How many times?
, How many triples, ($\mathbf{i}, \boldsymbol{j}, \boldsymbol{k}$) with $\mathbf{1} \leq \mathbf{i} \leq \boldsymbol{k} \leq \boldsymbol{j} \leq \boldsymbol{n}$?
//In the analysis we use " n " as a shorthand for "a.length "
for (int $i=0 ; i<a . l e n g t h ; i++$)
for (int $j=i ; j<a . l e n g t h ; ~ j++) ~\{$ int thisSum $=0$;

$$
\begin{aligned}
& \text { for (int } k=i ; k<=j ; k++) \\
& \text { thisSum }+=a[k] ;
\end{aligned}
$$

Three ways to find the sum

- By hand
- Using Maple
- Magic! (not really, but a preview of Disco)

Counting is (surprisingly) hard!

- How many triples, ($\mathbf{i}, \mathbf{j}, \boldsymbol{k}$) with $\mathbf{1 \leq i \leq k \leq j \leq n ? ~}$
- What is that as a summation?

- Let's solve it by hand to practice with sums

Hidden: One part of the process

 will ho

Then we can solve for the last term to get a formula that we need on the next slide:

Hidden

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\sum_{j=i}^{n}\left(\sum_{k=i}^{j} 1\right)\right)=\sum_{i=1}^{n}\left(\sum_{j=i}^{n}(j-i+1)\right)=\sum_{i=1}^{n}\left(\sum_{j=i}^{n} j-\sum_{j=i}^{n} i+\sum_{j=i}^{n} 1\right) \\
= & \sum_{i=1}^{n}\left(\frac{n(n+1)}{2}-\frac{(i-1) i}{2}-i(n-i+1)+(n-i+1)\right) \\
= & \sum_{i=1}^{n}\left(\frac{n(n+1)}{2}+n+1-i\left(n+\frac{3}{2}\right)+\frac{1}{2} i^{2}\right)=\left(\frac{n(n+1)}{2}+n+1\right) \sum_{i=1}^{n} 1-\left(n+\frac{3}{2}\right) \sum_{i=1}^{n} i+\frac{1}{2} \sum_{i=1}^{n} i^{2} \\
= & \left(\frac{n^{2}+3 n+2}{2}\right) n-\left(n+\frac{3}{2}\right) \frac{n(n+1)}{2}+\frac{1}{2} \frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

Simplify the sum

- When it gets down to "just Algebra", Maple is our friend

Help from Maple, part 1

Simplifying the last step of the monster sum
$>$ simplify $\left(\left(n^{\wedge} 2+3 * n+2\right) / 2 * n\right.$
$-(n+3 / 2) * n *(n+1) / 2+1 / 2 * n *(n+1) *(2 * n+1) / 6)$

$$
\frac{1}{6} n^{3}+\frac{1}{2} n^{2}+\frac{1}{3} n
$$

$>$ factor (8);

$$
\frac{1}{6}(n+2) n(n+1)
$$

Help from Maple, part 2

Letting Maple do the whole thing for us:
sum (sum (sum (1, k=i..j), j=i..n), i=1..n);
$\frac{1}{2}(n+1) n^{2}+2(n+1) n+\frac{1}{3} n+\frac{5}{6}-\frac{1}{2} n(n+1)^{2}-(n+1)^{2}$

$$
+\frac{1}{6}(n+1)^{3}-\frac{1}{2} n^{2}
$$

> factor (simplify (\%)) ;

$$
\frac{1}{6}(n+2) n(n+1)
$$

We get same answer if we sum from 0 to $n-1$, instead of 1 to n

factor (simplify(sum(sum(sum(1,k=i..j), j=i..n), $\mathbf{i}=\mathbf{1} . . \mathbf{n})$)) ;

$$
\frac{n(n+2)(n+1)}{6}
$$

factor(simplify(sum(sum(sum(1,k=i..j), j=i..n-1), $\mathbf{i}=0 . . \mathbf{n}-\mathbf{1}$))) ;

$$
\frac{n(n+2)(n+1)}{6}
$$

Interlude

- If GM had kept up with technology like the computer industry has, we would all be driving $\$ 25$ cars that got 1000 miles to the gallon. - Bill Gates

If the automobile had followed the same development cycle as the computer, a RollsRoyce would today cost \$100, get a million miles per gallon, and explode once a year, killing everyone inside.

- Robert X. Cringely
"Magic" Tangent:
Another (clever) way to count it
, How many triples, ($\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$) with $1 \leq i \leq k \leq j \leq n ~ ? ~$
- The trick:
- Find a set that's easier to count that has a one-to-one correspondence with the original

The "equivalent count" set

- We want to count the number of triples, ($\mathbf{i}, \mathbf{j}, k$) with $1 \leq i \leq k \leq j \leq n$
- First get an urn
- Put in n white balls labeled 1,2,...,n
- Put in one red ball and one blue one
- Choose 3 balls
- If red drawn, = min of other 2
- If blue drawn, = max of other 2
- What numbers do we get?

The Correspondence with
$1 \leq i \leq k \leq j \leq n$

- Choose 3 balls
- If red drawn, = min of other 2
- If blue drawn, = max of other 2

Triple of balls Corresponding triple of numbers

$(\mathrm{i}, \mathrm{k}, \mathrm{j})$	$(\mathrm{i}, \mathrm{k}, \mathrm{j})$
$($ red, $\mathbf{i}, \mathrm{j})$	$(\mathrm{i}, \mathrm{i}, \mathrm{j})$
(blue $\mathrm{i}, \mathrm{j})$	$(\mathrm{i}, \mathrm{j}, \mathrm{j})$
(red, blue, i)	$(\mathrm{i}, \mathrm{i}, \mathrm{i})$

How does this help?!?

- There's a formula!
- It counts the ways to choose M items from a set of P items "without replacement"
" P choose M " written P_{M} or $\binom{P}{M}$ is: $\binom{P}{M}=\frac{P!}{M!(P-M)!}$
- So ${ }_{n+2} \mathrm{C}_{3}$ is $\binom{n+2}{3}=\frac{(n+2)!}{3!(n-1)!}=\frac{n(n+1)(n+2)}{6}$

What is the main source of the simple algorithm's inefficiency?
//In the analysis we use " n " as a shorthand for "a.length "
for (int $i=0 ; i<a . l e n g t h ; i++$)
for (int j $=1 ; j<a . l e n g t h ; j++$) \{ int thisSum $=0$; for (int $k=i ; k<=j ; k++$) thisSum $+=a[k]$;

- The performance is bad!

Eliminate the most obvious inefficiency...

for (int $i=0 ; i<a . l e n g t h ; i++\}($ int thisSum $=0$;
for (int $j=1 ; j<a . l e n g t h ; j++$) $\{$ thisSum += a[j];
if (thisSum $>$ maxSum) \{ maxSum = thisSum; seqStart $=1$; seqEnd $=\mathbf{j}$;)
)

Can we do even better?

》) Tune in next time for the exciting conclusion!

