

Questions?

Program Grading

- Correctness usually graded using JUnit tests
- Exception: when we ask you to add your own tests
- Style
- No warnings remaining (per our preference file)
- Reasonable documentation
- Explanatory variable and method names
- You should format using Ctrl-Shift-F in Eclipse
- Efficiency
- Usually reasonable efficiency will suffice
- (e.q., no apparently infinite loops)
- Occasionally (like next week) we might give a minimum big-Oh efficiency for you to achieve

Finish the Comparator Example

Add an anonymous Comparator to main()

Diagnostic Quiz Review

Some questions that many students missed

Expression questions

- Give a very simple Java expression that is equivalent to:

```
!(x && !x)
```

BTW:Never write something like
if (a.isVisible() == true)

- What are the values of each of the following expressions, if $x==5$ and $y==7$?
$\mathbf{x}+\quad 1 \quad+\mathbf{y}$
$x+" \quad "+y$
$x+y+" u$

Simple big-Oh questions

- What is the worst-case Big-Oh running time of an unsuccessful sequential search of an unordered array that contains N elements?
- What is the worst-case Big-Oh running time of an unsuccessful binary search of an array that contains N
- What is the Big-Oh running time of merge sort of an array that contains N elements?

Method Selection

Overloading vs. Overriding

- In Eclipse, open:

exampl es. St at i cParnsDeno

- From the Di agQuii zRevi ew project
- This is based on Figure 4.45, page 166 of Weiss.
- Section 4.9 begins:
"A common myth is that all methods and all parameters are bound at runtime. This is not true."
- Methods that are static, final, or private.

Note that all of the code from the Weiss book is available on the course web site. You can run it, modify it, and experiment.

Interlude

- Computer Science is no more about computers than astronomy is about telescopes.

Donald Knuth

Interlude

- Computer Science is no more about computers than astronomy is about \qquad .

Donald Knuth

Aliasing

- How many objects are created in this code?

MyNunber a = new MyNunber();
a. set Num(5);

My/Nunber b = new MyNunber () ;
b. set Nun(6) ;

MyNunber c = a;
System out. printll(c);

- What is "aliasing"?

Default Constructors

- What does Java do if no constructor is declared for a class?
- How can we instantiate the class?
- What values do the fields get?
cl ass J anbal aya \{
int beans;
doubl e rice;
Insect crayfish;
publ ic String toString() \{
ret urn beans + " " + rice + " " + crayfish;
\}

Parameter Passing

- this code is available In Eclipse, open
exampl es. What I sX

```
public static void main(String[] args) {
    int x = 0;
    f(x);
    System.out.println(x);
    }
    private static void f(int x) {
        /*
        * TODO: Without adding printing, can you change the body of
        * this method to get this program to print:
        * 3?
        * 3.5?
        * Anything else?
        */
```


More Big-Oh Practice

for (int i $=0$; $\mathbf{i}<n ; i++$)
for (int j $=0 ; \mathbf{j}<\mathbf{i} ; \mathbf{j}+$)
Sunv-1; 34% of students answered $N \log N$ Where could the log come from?
for (int i $=0 ; \mathbf{i}<\mathbf{n} ; \mathbf{i + +}$
for (int $\mathbf{j}=\mathbf{0} ; \mathbf{j}<\mathbf{n} * \mathbf{n} ; \mathbf{j}+$)
for (int $k=0 ; k<j ; k++)$ sum+;
for (int $\mathbf{i}=1 ; \mathbf{i}<\mathbf{n} ; \mathbf{i}=\mathbf{2}$) sum-;

One more distinction

, throwversus throws

- Part of exception handling
- Signal an error with: thr ow new Except ii onType()
- Abdicate responsibility with:
voi d myMet hod() throus ExceptionType \{
\}

Finite State Machines

》) Also known as
Deterministic Finite Automata

A Finite State Machine (FSM)

- A finite set of states,
- One is the start state

Some are final, a.k.a accepting,states

- A finite alphabet (input symbols)
- A transition function
- How it works:
- Begin in start state
- Read an input symbol
- Go to the next state according to transition function
- More input?
- Yes, then repeat

No, then if in accept state, return true, else return false.

Example

- Draw a FSM to determine whether a lowercase sequence of characters contains each of the 5 regular vowels once in order
Example: facetious
- In some versions of FSMs, each transition generates output.

Another FSM Example

Draw state diagrams for these FSMs

- Indicate the Start State and final (accepting) states
- FSM1:
- Input alphabet $\{0,1\}$
- Accepts (ends in an accepting state) all input strings that do NOT contain 010 as a substring
, FSM2: (only if you get the first one done quickly)
- Input alphabet $\{0,1\}$

Accepts (ends in an accepting state)
all input strings that are binary representations of numbers that are divisible by 3
Hints: Use 4 states, a start state plus
1 state each for $x \% 3==0, x \% 3==1$, and $x \% 3==2$.
What does the arrival of a 0 do to
the current value? (doubles it) What about a 1?

x	binary	x	binary
0	0	7	111
1	1	8	1000
2	10	9	1001
3	11	10	1010
4	100	11	1011
5	101	12	1100
6	110	13	1101

Colorize, Coming Soon

- A pair programming assignment.
- Due (along with Hardy, Part 2) on Class Day 12.

Colorize program assignment

- Input: legal Java source code
- Output: colorized HTML
- Keywords in blue, strings in red, comments in green, everything else in black
Layout just like original Java input file
// Opening comment. Note that a "string" is ignored here. class /* Bad name */ Stupid \{

int x ;

String $t=$ "A string with a /* in it";
String $p=$ " string with a \backslash " in it";

We can use an FSM for this!

Next time

- Maximum Contiguous Subsequence Sum problem from Weiss Chapter 5.
- Perhaps we will start it today.

Why do we look at this problem?

- It's interesting
- Analyzing the obvious solution is instructive:
- We can make the program more efficient

A Nice Algorithm Analysis Example

- Problem: Given a sequence of numbers, find the maximum sum of a contiguous subsequence.
, Consider:
- What if all the numbers were positive?

- What if they all were negative?
- What if we left out "contiguous"?

Formal Definition: Maximum
Contiguous Subsequence Sum
Problem definition: Given a non-empty sequence of n (possibly negative) integers
$A_{1}, A_{2}, \ldots, A_{n}$, find the maximum consecutive
subsequence $S_{i, j}=\sum_{k=i}^{j} A_{k}$, and the corresponding values of i and j.

- In $\{-2,11,-4,13,-5,2\}, S_{2,4}=$?
- In $\{1,-3,4,-2,-1,6\}$, what is MCSS?
- If every element is negative, what's the MCSS?

1 -based indexing

A quick-and-dirty algorithm

- Design one right now.

Efficiency doesn't matter.

- It has to be easy to understand.
- 3 minutes
, Examples to consider:
- $\{-3,4,2,1,-8,-6,4,5,-2\}$
- $\{5,6,-3,2,8,4,-12,7,2\}$

Analysis of this Algorithm

- What statement is executed the most often?
- How many times?
, How many triples, ($\mathbf{i}, \mathbf{j}, \mathbf{k})$ with $\mathbf{1} \mathbf{\leq} \leq \mathbf{k} \underset{\mathbf{j}}{\boldsymbol{s}}$?
//In the analysis we use " n " as a shorthand for "a.length "
for (int $i=0 ; i<a . l e n g t h ; i++)$
for (int j = i; j < a.length; j++) \{ int thisSum $=0$;
for (int $k=i ; k<=j ; k++$)
thisSum += a[k];
Outer numbers could be 0 and $n-1$,
and we'd still get the same answer.

Three ways to find the sum

- By hand
- Using Maple
- Magic! (not really, but a preview of Disco)

