
Data Structures grand tour continues
Diagnostic Quiz Review

Comparable, Comparator, and Function Objects

Check out from SVN: DiagQuizReview

Written Assignment 2
Pascal Christmas Tree

Some review
Some new
All will appear again

Operations
Provided

Array List
Efficiency

Linked List
Efficiency

Random access O(1) O(n)
Add/remove item O(n) O(1)

Q1

 A last-in, first-out (LIFO)
data structure

 Real-world stacks
◦ Plate dispensers in

the cafeteria
◦ Pancakes!

 Some uses:
◦ Tracking paths through a maze
◦ Providing “unlimited undo” in an application

Operations
Provided

Efficiency

Push item O(1)
Pop item O(1)

Implemented by
Stack, LinkedList,
and ArrayDeque in
Java

 first-in, first-out
(FIFO)
data structure

 Real-world queues
◦ Waiting line at

the BMV
◦ Character on Star Trek TNG

 Some uses:
◦ Scheduling access to shared resource (e.g., printer)

 Operations
Provided

Efficiency

Enqueue item O(1)
Dequeue item O(1)

Implemented by
LinkedList and
ArrayDeque in
Java

 A collection of items without duplicates (in
general, order does not matter)
◦ If a and b are both in set, then !a.equals(b)

 Real-world sets:
◦ Students
◦ Collectibles

 One possible use:
◦ Quickly checking if an

item is in a collection

Operations HashSet TreeSet
Add/remove item O(1) O(lg n)
Contains? O(1) O(lg n)

Can hog space Sorts items!

Example from 220

Q2-5

 Associate keys with values
 Real-world “maps”
◦ Dictionary
◦ Phone book

 Some uses:
◦ Associating student ID with transcript
◦ Associating name with high scores

Operations HashMap TreeMap
Insert key-value pair O(1) O(lg n)
Look up the value associated
with a given key

O(1) O(lg n)

Can hog space Sorts items by key!

How is a TreeMap like a TreeSet?
How is it different?

 Each item stored has an associated priority
◦ Only item with “minimum” priority is accessible
◦ Operations: insert, findMin, deleteMin

 Real-world “priority queue”:
◦ Airport ticketing counter

 Some uses
◦ Simulations
◦ Scheduling in an OS
◦ Huffman coding

Not like regular
queues!

Operations
Provided

Efficiency

Insert O(log n)
Find Min O(log n)
Delete Min O(log n)

The version in Warm Up
and Stretching isn’t this

efficient.
Q6

 Collection of nodes
◦ One specialized node is the root.
◦ A node has one parent (unless it is the root)
◦ A node has zero or more children.

 Real-world “trees”:
◦ Organizational hierarchies
◦ Some family trees

 Some uses:
◦ Directory structure

on a hard drive
◦ Sorted collections

Operations
Provided

Efficiency

Find O(log n)
Add/remove O(log n)

Only if tree is
“balanced”

 A collection of nodes and edges
◦ Each edge joins two nodes
◦ Edges can be directed or undirected

 Real-world “graph”:
◦ Road map

 Some uses:
◦ Tracking links between web pages
◦ Facebook

Operations
Provided

Efficiency

Find O(n)
Add/remove O(1) or O(n) or O(n2)

Depends on
implementation

(time/space trade off)

 Graph whose edges have numeric labels
 Examples (labels):
◦ Road map (mileage)
◦ Airline's flight map (flying time)
◦ Plumbing system (gallons per minute)
◦ Computer network (bits/second)

 Famous problems:
◦ Shortest path
◦ Maximum flow
◦ Minimal spanning tree
◦ Traveling salesman
◦ Four-coloring problem for planar graphs

 Array
 List
◦ Array List
◦ Linked List

 Stack
 Queue
 Set
◦ Tree Set
◦ Hash Set

 Map
◦ Tree Map
◦ Hash Map

 Priority Queue
 Tree
 Graph
 Network

We’ll implement and use nearly
all of these, some multiple ways.
And a few other data structures.

Structure find insert/remove Comments
Array O(n) can't do it Constant-time access by position
Stack top only

O(1)
top only
O(1)

Easy to implement as an array.

Queue front only
O(1)

O(1) insert rear, remove front.

ArrayList O(log N) O(N) Constant-time access by position
Linked List O(n) O(1) O(N) to find insertion position.
HashSet/Map O(1) O(1) If table not very full
TreeSet/Map O(log N) O(log N) Kept in sorted order
PriorityQueue O(log N) O(log N) Can only find/remove smallest
Tree O(log N) O(log N) If tree is balanced
Graph O(N*M) ? O(M)? N nodes, M edges

Network shortest path, maxFlow

 Give a very simple Java expression that is
equivalent to:

 !(x && !x)

 What are the values of each of the following

expressions, if x==5 and y ==7 ?
 x + ' ' + y
 x + " " + y
 x + y + " "

BTW:Never write something like

 if (a.isVisible() == true)

 What is the worst-case Big-Oh running time
of an unsuccessful sequential search of an
unordered array that contains N elements?

 What is the worst-case Big-Oh running time
of an unsuccessful binary search of an array
that contains N

 What is the Big-Oh running time of merge
sort of an array that contains N elements?

 In Eclipse, open:
examples.StaticParmsDemo

 from the DiagQuizReview project
 This is based on Figure 4.45, page 166 of

Weiss.
 Section 4.9 begins:
◦ "A common myth is that all methods and all

parameters are bound at runtime. This is not true."
 Methods that are static, final, or private.

Q1-3

Note that all of the code from the
Weiss book is available on the
course web site. You can run it,
modify it, and experiment.

 Computer Science is no more about
computers than astronomy is about .

 Donald Knuth

 Computer Science is no more about
computers than astronomy is about
telescopes.

 Donald Knuth

 How many objects are created in this code?

 What is “aliasing”?

MyNumber a = new MyNumber();
a.setNum(5);
MyNumber b = new MyNumber();
b.setNum(6);
MyNumber c = a;
System.out.println(c);

Q4

 What does Java do if no constructor is
declared for a class?
◦ How can we instantiate the class?
◦ What values do the fields get?
class Jambalaya {
 int beans;
 double rice;
 Insect crayfish;

 public String toString() {
 return beans + “ ” + rice + “ ” + crayfish;
 }
}

Q5

 this code is available In Eclipse, open
examples.WhatIsX

for (int i = 0; i < n; i++)
 for (int j = 0; j < i; j++)
 sum++;

for (int i = 0; i < n; i++)
 for (int j = 0; j < n * n; j++)
 for (int k = 0; k < j; k++)
 sum++;

for (int i = 1; i < n; i = i * 2)
 sum++;

Q6-7

34% of students answered N log N.
Where could the log come from?

 throw versus throws
◦ Part of exception handling
◦ Signal an error with: throw new ExceptionType()
◦ Abdicate responsibility with:

 void myMethod() throws ExceptionType {
 …
 }

Comparable and Comparator

 interface java.lang.Comparable<T>
 Type Parameter: T - the type of objects that this

object may be compared to
 int compareTo(T o)
◦ Compares this with o for order.
◦ Returns a negative integer, zero, or a positive integer

as this object is less than, equal to, or greater than the
specified object
◦ Primitive type comparison: x < y
◦ Comparable comparison: obj1.compareTo(obj) < 0

 There is more than one natural way to compare
Rectangles!

 What if we want to compare using
◦ Height?
◦ Width?
◦ Closeness of aspect ratio to the golden ratio, φ

 It would be nice to be able to create and pass
comparison methods to other methods …

2
51+

==
+

=
b
a

a
baϕ

 Why do methods have arguments in the first place?

 We'd like to be able to pass a method as an
argument to another method

 This is not a new or unusual idea.
◦ You pass other functions as arguments to Maple's

plot and solve functions (on a later slide).
◦ C and C++ provide qsort, whose first argument

is a comparison function.
◦ Scheme and Python also have sort functions that

can take a comparison function as an argument.

 Scheme has a sort function that takes a
function as an argument:

Chez Scheme Version 7.4
Copyright (c) 1985-2007 Cadence Research Systems
> (sort > '(7 3 9 -2 5 -6 0 4 1 -8))
(9 7 5 4 3 1 0 -2 -6 -8)
> (sort (lambda (x y) (< (abs x) (abs y)))
 '(7 3 9 -2 5 -6 0 4 1 -8))
(0 1 -2 3 4 5 -6 7 -8 9)

>>> list = [4, -2, 6, -1, 3, 5, -7]
>>> list.sort()
>>> list
[-7, -2, -1, 3, 4, 5, 6]
>>> def comp (a, b):
 return abs(a) - abs (b)

>>> list.sort(comp)
>>> list
[-1, -2, 3, 4, 5, 6, -7]

The comp function is
passed as an argument

to the sort method

 What’s it all about?
◦ Java doesn't (yet) allow passing functions as

arguments.
◦ So, we create objects whose sole purpose is to pass

a function into a method
◦ Called function objects
 a.k.a. functors, functionoids, more fun than a barrel of

monkeys

 Prime function object example: Comparator

Java: "imposed" ordering "natural" ordering

 java.util.Arrays and
java.util.Collections are your friends!

 On Written Assignment 2
◦ The CountMatches implementation problem asks

you to write code that creates and uses function
objects.

Add an anonymous
Comparator to main().

	CSSE 230 Day 4
	Questions?
	Data Structures�Grand Tour Continues
	Array Lists and Linked Lists
	Stack
	Queue
	Set
	Map
	HashMap/HashSet Example (220)
	Priority Queue
	Trees, Not Just For Sorting
	Graphs
	Networks
	Common ADTs
	Data Structure Summary
	Diagnostic Quiz Review
	Expression questions
	Simple big-Oh questions
	Method Selection�Overloading vs. Overriding
	Interlude
	Interlude
	Aliasing
	Default Constructors
	Parameter Passing
	More Big-Oh Practice
	One more distinction
	Function Objects�and Generics
	Comparable review:
	Limitations of Comparable!
	Function Objects (a.k.a. Functors)
	In Scheme
	Similar example in Python
	Similar example in Maple
	More Maple
	Java Function Objects
	You say "tomato",�I say "toe-mah-toe"
	Sorting Arrays and Collections
	Slide Number 38

