
Asymptotic Notation

Basic Data Structure Review

Check out from SVN:
ComparatorExample project

 Written assignment 1 (to Angel dropbox) was
due at 8 AM
◦ You can use a late day if you aren’t done.

 See schedule page for things due soon
◦ Warm Up and Stretching programs

◦ Written Assignment 2

◦ Pascal's Christmas Tree programming problem

 Preview of PascalChristmasTree assignment

 Asymptotic Analysis

 Data Structures Overview
◦ Mostly the same as 220, but with a few more details

and a few more structures

 Review of Function Objects (perhaps next
session)

• Demo

• Meet your
partner to
exchange
contact
info in case
you want
to start
early.

csse230-201330-pascal10,andrewaj,krullal

csse230-201330-pascal11,beyerpc,lawrener

csse230-201330-pascal12,bliudzpp,manc

csse230-201330-pascal13,burkhaka,martinop

csse230-201330-pascal14,butlerjr,michaea1

csse230-201330-pascal15,chenr,klingsa

csse230-201330-pascal16,collinka,morganac

csse230-201330-pascal17,cooperdl,robinsdc

csse230-201330-pascal18,enricotj,rodriga

csse230-201330-pascal19,huangf,samynpd

csse230-201330-pascal20,huangj1,songm

csse230-201330-pascal21,jenkinjk,vattercw

csse230-201330-pascal22,kassalje,weissna

csse230-201330-pascal23,kimb2,wieteltr

csse230-201330-pascal24,moravemj

csse230-201330-pascal30,bowmasbt,rockwotj
csse230-201330-pascal31,earlda,romogi
csse230-201330-pascal32,evansda,ryanjm
csse230-201330-pascal33,gollivam,saslavns
csse230-201330-pascal34,havenscs,schneimd
csse230-201330-pascal35,heidlapt,scolarrf
csse230-201330-pascal36,jacksokb,turnerrs
csse230-201330-pascal37,jonescd,wadema
csse230-201330-pascal38,jungckjp,westsg
csse230-201330-pascal39,kanherp,wuj
csse230-201330-pascal40,kowalsdj,yeomanms
csse230-201330-pascal41,lis,caoc
csse230-201330-pascal42,llewelsd,lid
csse230-201330-pascal43,cookmj

 Goal: For some boolean-valued property p(n),
and some integer constant n0, prove that p(n)
is true for all integers n  n0

 Technique:
◦ Show that p(n0) is true

◦ Show that for all k  n0, p(k) implies p(k+1)

Q7

That is, show that whenever p(k) is true, then
p(k+1) is also true.

Big-Oh (Big O)

Big-Omega

Big-Theta

 We only care what happens when N gets large

 Is the function linear? quadratic?
exponential?

Figure 5.1
Running times for small inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

(linear looks
constant for
small inputs)

Figure 5.2
Running times for moderate inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

 Drop lower order terms and constant factors

 7n – 3 is O(n)

 8n2logn + 5n2 + n is O(n2logn)

≥

 A function f(n) is (in) O(g(n)) if there exist two

positive constants c and n0 such that for all n n0,
f(n)  c g(n)

 So all we must do to prove that f(n) is O(g(n)) is
produce two such constants.

 f(n) = n + 12, g(n) = ???.

 f(n) = n2 + sqrt(n), g(n) = ???

Assume that all functions have non-negative
values, and that we only care about n≥0. For
any function g(n), O(g(n)) is a set of functions.

Q1-2

≥

Q3

 Give tightest bound you can
◦ Saying 3n+2 is O(n3) is true, but not as useful as

saying it’s O(n)

 Simplify:
◦ You could say: 3n+2 is O(5n-3log(n) + 17)

◦ And it would be technically correct…

◦ It would also be poor taste … and put me in a bad
mood.

 But… if I ask “true or false: 3n+2 is O(n3)”,
what’s the answer?
◦ True!

 There are times when one might choose a
higher-order algorithm over a lower-order
one.

 Brainstorm some ideas to share with the class

Q4

 Consider the limit

 What does it say about asymptotic relationship
between f and g if this limit is…
◦ 0?

◦ finite and non-zero?

◦ infinite?

)(

)(
lim

ng

nf

n 

Q5

1. n and n2

2. log n and n (on these questions and solutions
ONLY, let log n mean natural log)

3. n log n and n2

4. logan and logbn (a < b)

5. na and an (a > =1)

6. an and bn (a < b)

Recall
l’Hôpital’s rule: under
appropriate conditions,

and:

Q6

 What is data?
 What do we mean by “structure”?

 A data type is an interpretation of the bits
◦ Basically a set of operations

◦ May be provided by the hardware (int and double)

◦ By software (java.math.BigInteger)

◦ By software + hardware (int[])

 A mathematical model of a data type

 Specifies:
◦ The type of data stored

◦ The operations supported

◦ The arg types and return types of these operations

◦ What each operation does, but not how

 One special value: zero
 Three basic operations:
◦ succ
◦ pred
◦ isZero

 Derived operations include plus
 Sample rules:
◦ isZero(succ(n))  false

◦ pred(succ(n))  n

◦ plus(n, zero)  n

◦ plus(n, succ(m))  succ(plus(n, m))

Q7-8

 Typically we’re concerned with three things:
◦ Specification (interface for the operations)
◦ Implementation(s):

 Representation (fields)

 Operation implementations (method definitions)

◦ Application (uses for the ADT)

 CSSE 220 emphasizes specification and uses

 CSSE 230 emphasizes specification and

implementations

Some review

Some new

All will appear again

 Array

 List
◦ Array List

◦ Linked List

 Stack

 Queue

 Set
◦ Tree Set

◦ Hash Set

 Map
◦ Tree Map

◦ Hash Map

 Priority Queue

 Tree

 Graph

 Network

Implementations for almost all
of these are provided by the
Java Collections Framework in
the java.util package.

 Size must be declared when the
array is constructed

 Can look up or store items by index
Example:
 nums[i+1] = nums[i] + 2;

a[0]

a[1]

a[2]

a[i]

a[N-2]

a[N-1]

L a

Q9

 A list is an ordered collection where elements
may be added anywhere, and any elements
may be deleted or replaced.

 Array List: Like an array, but growable and
shrinkable.

 Linked List:

Operations
Provided

Array List
Efficiency

Linked List
Efficiency

Random access O(1) O(n)

Add/remove item O(n) O(1)

Q10

 A last-in, first-out (LIFO)
data structure

 Real-world stacks
◦ Plate dispensers in

the cafeteria

◦ Pancakes!

 Some uses:
◦ Tracking paths through a maze

◦ Providing “unlimited undo” in an application

Operations
Provided

Efficiency

Push item O(1)

Pop item O(1)

Implemented by
Stack, LinkedList,
and ArrayDeque in
Java

 first-in, first-out
(FIFO)
data structure

 Real-world queues
◦ Waiting line at

the BMV

◦ Character on Star Trek TNG

 Some uses:
◦ Scheduling access to shared resource (e.g., printer)

 Operations
Provided

Efficiency

Enqueue item O(1)

Dequeue item O(1)

Implemented by
LinkedList and
ArrayDeque in
Java

 A collection of items without duplicates (in
general, order does not matter)
◦ If a and b are both in set, then !a.equals(b)

 Real-world sets:
◦ Students

◦ Collectibles

 One possible use:
◦ Quickly checking if an

item is in a collection

Operations HashSet TreeSet

Add/remove item O(1) O(lg n)

Contains? O(1) O(lg n)

Can hog space Sorts items!

Q10-14

Example from 220

 Associate keys with values

 Real-world “maps”
◦ Dictionary

◦ Phone book

 Some uses:
◦ Associating student ID with transcript

◦ Associating name with high scores

Operations HashMap TreeMap

Insert key-value pair O(1) O(lg n)

Look up the value associated
with a given key

O(1) O(lg n)

Can hog space
Sorts items by key!

How is a TreeMap like a TreeSet?
How is it different?

 Each item stored has an associated priority
◦ Only item with “minimum” priority is accessible

◦ Operations: insert, findMin, deleteMin

 Real-world “priority queue”:
◦ Airport ticketing counter

 Some uses
◦ Simulations

◦ Scheduling in an OS

◦ Huffman coding

Not like regular
queues!

Operations
Provided

Efficiency

Insert O(log n)

Find Min O(log n)

Delete Min O(log n)

The version in Warm Up
and Stretching isn’t this

efficient.

Q15

 Collection of nodes
◦ One specialized node is the root.

◦ A node has one parent (unless it is the root)

◦ A node has zero or more children.

 Real-world “trees”:
◦ Organizational hierarchies

◦ Some family trees

 Some uses:
◦ Directory structure

on a hard drive

◦ Sorted collections

Operations
Provided

Efficiency

Find O(log n)

Add/remove O(log n)

Only if tree is
“balanced”

 A collection of nodes and edges
◦ Each edge joins two nodes

◦ Edges can be directed or undirected

 Real-world “graph”:
◦ Road map

 Some uses:
◦ Tracking links between web pages

◦ Facebook

Operations
Provided

Efficiency

Find O(n)

Add/remove O(1) or O(n) or O(n2)

Depends on
implementation

(time/space trade off)

 Graph whose edges have numeric labels
 Examples (labels):
◦ Road map (mileage)
◦ Airline's flight map (flying time)
◦ Plumbing system (gallons per minute)
◦ Computer network (bits/second)

 Famous problems:
◦ Shortest path
◦ Maximum flow
◦ Minimal spanning tree
◦ Traveling salesman
◦ Four-coloring problem for planar graphs

 Array

 List
◦ Array List

◦ Linked List

 Stack

 Queue

 Set
◦ Tree Set

◦ Hash Set

 Map
◦ Tree Map

◦ Hash Map

 Priority Queue

 Tree

 Graph

 Network

We’ll implement and use nearly
all of these, some multiple ways.
And a few other data structures.

Structure find insert/remove Comments

Array O(n) can't do it Constant-time access by position

Stack top only
O(1)

top only
O(1)

Easy to implement as an array.

Queue front only
O(1)

O(1) insert rear, remove front.

ArrayList O(log N) O(N) Constant-time access by position

Linked List O(n) O(1) O(N) to find insertion position.

HashSet/Map O(1) O(1) If table not very full

TreeSet/Map O(log N) O(log N) Kept in sorted order

PriorityQueue O(log N) O(log N) Can only find/remove smallest

Tree O(log N) O(log N) If tree is balanced

Graph O(N*M) ? O(M)? N nodes, M edges

Network shortest path, maxFlow

Q16-17

Comparable and Comparator

 interface java.lang.Comparable<T>

 Type Parameter: T - the type of objects that this
object may be compared to

 int compareTo(T o)

◦ Compares this with o for order.

◦ Returns a negative integer, zero, or a positive integer
as this object is less than, equal to, or greater than the
specified object

◦ Primitive type comparison: x < y

◦ Comparable comparison: obj1.compareTo(obj) < 0

 There is more than one natural way to compare
Rectangles!

 What if we want to compare using
◦ Height?
◦ Width?
◦ Closeness of aspect ratio to the golden ratio, φ

 It would be nice to be able to create and pass
comparison methods to other methods …

2

51





b

a

a

ba


 Why do methods have arguments in the first place?

 We'd like to be able to pass a method as an
argument to another method

 This is not a new or unusual idea.
◦ You pass other functions as arguments to Maple's

plot and solve functions (on a later slide).

◦ C and C++ provide qsort, whose first argument

is a comparison function.

◦ Scheme and Python also have sort functions that
can take a comparison function as an argument.

 Scheme has a sort function that takes a
function as an argument:

Chez Scheme Version 7.4

Copyright (c) 1985-2007 Cadence Research Systems

> (sort > '(7 3 9 -2 5 -6 0 4 1 -8))

(9 7 5 4 3 1 0 -2 -6 -8)

> (sort (lambda (x y) (< (abs x) (abs y)))

 '(7 3 9 -2 5 -6 0 4 1 -8))

(0 1 -2 3 4 5 -6 7 -8 9)

>>> list = [4, -2, 6, -1, 3, 5, -7]

>>> list.sort()

>>> list

[-7, -2, -1, 3, 4, 5, 6]

>>> def comp (a, b):

 return abs(a) - abs (b)

>>> list.sort(comp)

>>> list

[-1, -2, 3, 4, 5, 6, -7]

The comp function is
passed as an argument

to the sort method

 What’s it all about?
◦ Java doesn't (yet) allow passing functions as

arguments.

◦ So, we create objects whose sole purpose is to pass
a function into a method

◦ Called function objects

 a.k.a. functors, functionoids, more fun than a barrel of
monkeys

 Weiss DS book's example: Comparator

Java: "imposed" ordering "natural" ordering

 java.util.Arrays and
java.util.Collections are your friends!

 On Written Assignment 2
◦ The CountMatches implementation problem asks

you to write code that creates and uses function
objects.

Q10-11

If a miracle occurs and we have time
left

Make progress on Warm Up and
Stretching problems

Get help as needed, especially with
Eclipse and SVN issues

Work on WA2 if you have finished
WarmUpAndStretching

