CSSE 230 Day 17
 Introduction to graphs and their common representations

Hash Table Implementation

Reminders/Announcements

- Doublets partner evaluation due Wednesday at noon
- WA6 due Thursday at 8
- One actual written problem
- Queens problem from Session 16
- A couple more methods for ThreadedBinarySearchTree
- EditorTrees Milestone 1 due Monday
- Recall that Milestone 1 requires much less than half of the total project effort
, Exam 2 Tuesday May 8, 7-9 PM.
- Your questions?
- EditorTree requirements
- Anything else

Graphs

D) Terminology Representations Algorithms

Graph Terminology

also called
 "neighbors"

- adjacent vertices: connected by an edge
- degree (of a vertex): \# of adjacent vertices

- Since adjacent vertices each count the adjoining edge, it will be counted twice

Continuing Graph Terminology

connected component: maximal connected subgraph. E.g., the graph below has 3 connected components.

| More Connectivity |
| :--- | :--- | :--- |
| $\mathbf{n}=$ \#vertices |
| $\mathbf{m}=$ \#edges |

```
We represent vertices using a collection of objects
```

- Each Vertex object contains information about itself
- Examples:
- City name
- IP address
- People in a social network

There are many options for representing edges 2-4 of a graph

- Adjacency matrix
- Adjacency list. Each vertex stores...
- pointers to other vertices?
- named vertices using a HashMap<Name,Vertex>
- An index into an array of the Vertex objectsl n each case, we need a way to store the vertex collection
- Edge list

To consider:
Why not just use a triangular "matrix"?
Does a boolean adjacency matrix make sense?
What are the problems with the object-oriented approach?

Sample graph problem: Weighted Shortest Path

- What's the cost of the shortest path from A to each of the other nodes in the graph?

Largest Connected Component

- What's the size of the largest connected component?

For much more on graphs, take MA/CSSE 473 or MA 477

Hashing

》) Efficiently putting 5 pounds of data in a 20 pound bag

HashMap is a fast approach to dictionary storage ${ }^{5}$

- Functionality: A HashMap implements a finite function $\mathrm{H}: \mathrm{K} \rightarrow \mathrm{V}$
- domain of H is the set K of possible keys,
- range is the set V of possible values
- Main operations: put(k, v), get(k), remove(k)
- Representation: Actual table data is stored in a large array of key-value pairs
- A HashSet uses a HashMap internally

Pay attention to keys; ignore the values.

- Speed: Insertion and lookup are constant time with a good "hash function"
- and a large storage array

First approach: Direct Address Table

- If we have a collection of n key-value pairs whose keys are unique integers in the range $0 . . \mathrm{m}-1$, where $m>=\mathrm{n}$,
- then we can store the items in a direct address table, T[m], - where T[k] is either null or contains the key-value pair for key k.
Contents of this
slide are from John Morris, University of Western Australia.
Adapted by
Claude
- Searching a direct address table is clearly an $\mathrm{O}(1)$ operation:
- if T[k] is not null, get(k) returns T[k].value

Anderson

```
- otherwise returns null
```


First approach: Direct Address Table

- There are two main constraints:

1. keys must be positive integers
2. the set of possible keys must be severely bounded

- largest key must be less than table size

The second constraint is often impossible to meet

And what if the domain of our map is some non-integer type?

We attempt to find a unique integer for each key $\quad 6$ by applying a hashCode() function ...
key \rightarrow hashCode() \rightarrow integer
Starting
point for
determining
index in the
A good hashCode() function evenly distributes the keys, like:
hashCode("ate")= 48594983
hashCode("ape")= 76849201 hashCode("awe") = 14893202
array for
this key.
What can
go wrong?
... and then take that integer mod the table size (m) to get an index into the array.
, Example: if $m=100$:
hashCode("ate") $=48594983$
hashCode("ape")= 76849201
hashCode("awe") 1489036

Index is calculated from the object itself, not 7-8 from a comparison with other objects in table

- Every Java object has a hashCode method that returns an integer H
- It uses H \% m as the index into the array

...
83 ate
84

Object implements a default hashCode method

- Should we just inherit it?
- JDK classes override the hashCode() method
- If you plan to use instances of your class as keys in a hash table, you probably should too!

Choosing a hashCode() method for a class

- Should be fast to compute
- Should distribute keys as evenly as possible
- These two goals are often contradictory; we need to achieve a balance

A simple hash function for strings is a function that uses every character in its computaton

```
// This could be in the String class
public static int hash(String s) {
    int total = 0;
    for (int i=0; i<s.length(); i++)
        total = total + s.charAt(i);
    return Math.abs(total);
}
```

, Advantages?

- Disadvantages?

A better hash function for Strings also uses place value, but with a base that's prime

```
// This could be in the String class
public static int hash(String s) {
    int total = 0;
    for (int i=0; i<s.length(); i++)
        total = total*23 + s.charAt(i);
    return Math.abs(total);
}
```

, Spreads out the values more, and anagrams not an issue.

- We can't entirely avoid collisions. Why?
- What about overflow during computation?
- Note: String already has a reasonable hashCode () method; we don't have to write it ourselves.

Hash Table Caveats

- Objects that are equal (based on the equal s method) MUST have the same hashCode values
- As much as possible, different objects should have different hashCodes
- Beware of mutable keys!
- Python disallows mutable keys
- Hash tables don't maintain sorted order
- So what's cost to find min or max element?

Collisions are Inevitable

- A hash table implementation (like HashMap) provides a "collision resolution mechanism"
- There are a variety of approaches to collision resolution
- Fewer collisions lead to faster performance

Collision Avoidance

- Just make hashCode unique?
- Possible key values >> capacity of table
- Example: A key may be an array of 16 characters
- How many different values could there be?
- Table size << possible hashCode values
- hashCode values are taken mod the current table size

Collision Resolution: Linear Probing

- Collision? Use the next available space:
- Try H+1, H+2, H+3, ..
- Wrap around when we reach the end of the array
- Problem: Clustering
- Animation:
- http://www.cs.auckland.ac.nz/software/AlgAnim/h ash_tables.html

```
hash ( 89, 10 ) = 9
hash ( 18, 10) = 8
hash (49, 10) = 9
hash ( 58, 10) = 8
hash (9,10) = 9
```

Figure 20.4 Linear probing hash table after each insertion

- Depends on Load Factor, λ :
- Ratio of the number of items stored to table size
- $0 \leq \lambda \leq 1$.
- For a given λ, what is the expected number of probes before an empty location is found?

Rough Analysis of Linear Probing

- For a given λ, what is the expected number of probes before an empty location is found?
- Assume all locations are equally likely to be occupied, and equally likely to be the next one we look at.
- Then the probability that a given cell is full is λ and probability that a given cell is empty is $1-\lambda$.
- What's the expected number?

$$
\sum_{p=1}^{\infty} \lambda^{p-1}(1-\lambda) p=\frac{1}{1-\lambda}
$$

Better Analysis of Linear Probing

, "Equally likely" probability is not realistic

- Clustering!
- Blocks of occupied cells are formed

Any collision in a block makes the block bigger

- Two sources of collisions:
- Identical hash values

Hash values that hit a cluster

- Actual average number of probes for large λ :

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)
$$

For a proof, see Knuth, The Art of Computer Programming, Vol 3: Searching Sorting, 2nd ed, Addision-Wesley, Reading, MA, 1998.

Why consider linear probing?

- Easy to implement
- Simple code has fast run time per probe
- Works well when load is low
- It could be more efficient to just get a bigger table and compute new locations for each item when table starts to fill.

Typically done in practice: rehash to an array that is double in size once the load factor goes over 0.75

- What about other fast, easy-to-implement strategies?

Quadratic Probing

- Linear probing:
- Collision at H? Try H, H+1, H+2, H+3,...
- Guaranteed to succeed if array not completely full?
- Quadratic probing:
- Collision at H ? Try $\mathrm{H}, \mathrm{H}+1^{2}$. $\mathrm{H}+2^{2}, \mathrm{H}+3^{2}, \ldots$
- Eliminates primary clustering, but can cause "secondary clustering"
Will it always succeed?

Quadratic Probing Tricks (1/2)

- Choose a prime number p for the array size
- Then if $\lambda \leq 0.5$:
-Guaranteed insertion
- If there is a "hole", we'll find it

No cell is probed twice

- See proof of Theorem 20.4 (done in CSSE 473):
- Suppose that we repeat a probe before trying more than half the slots in the table
See that this leads to a contradiction
- Contradicts fact that the table size is prime

Quadratic Probing Tricks (2/2)

- Use an algebraic trick to calculate next index to try
- Replaces mod and general multiplication

Difference between successive probes yields:

- Probe i location, $\mathrm{H}_{\mathrm{i}}=\left(\mathrm{H}_{\mathrm{i}-1}+2 \mathrm{i}-1\right) \% \mathrm{M}$
- Just use bit shift to "multiply" i by 2
- Don't need mod, since i is at most $M / 2$, so
- probeLoc $=$ probeLoc $+(i \ll 1)-1$;
if (probeLoc >=M)

$$
\text { probeLoc }-=M \text {; }
$$

Quadratic probing analysis

- No one has been able to analyze it!
- Experimental data shows that it works well
- Provided that the array size is prime, and is the table is less than half full

Another Approach: Separate Chaining

- Use an array of linked lists
- How would that help resolve collisions?

Hashing with Chaining

- Use an array of linked lists

Work Time

》) WA6 or Editor Trees

