
4/22/2012

1

Introduction to graphs

and their common representations

Hash Table Implementation

� Doublets partner evaluation due Wednesday at
noon

� WA6 due Thursday at 8
◦ One actual written problem
◦ Queens problem from Session 16
◦ A couple more methods for ThreadedBinarySearchTree

� EditorTrees Milestone 1 due Monday
◦ Recall that Milestone 1 requires much less than half of

the total project effort

� Exam 2 Tuesday May 8, 7-9 PM.

� Your questions?Your questions?Your questions?Your questions?
◦ EditorTree requirements
◦ Anything else

4/22/2012

2

Terminology

Representations

Algorithms

4/22/2012

3

also called
“neighbors”

1111

4/22/2012

4

A necessary but not sufficient A necessary but not sufficient A necessary but not sufficient A necessary but not sufficient
condition for a graph to be a tree.condition for a graph to be a tree.condition for a graph to be a tree.condition for a graph to be a tree.

� Each Vertex object contains information
about itself

� Examples:

◦ City name

◦ IP address

◦ People in a social network

4/22/2012

5

� Adjacency matrix

� Adjacency list. Each vertex stores…
� pointers to other vertices?

� named vertices using a HashMap<Name,Vertex>

� An index into an array of the Vertex objectsI
n each case, we need a way to store the vertex
collection

� Edge list

To consider:

Why not just use a triangular “matrix”?

Does a boolean adjacency matrix make sense?

What are the problems with the object-oriented approach?

2222----4444

� What’s the cost of the shortest path from A to
each of the other nodes in the graph?

4/22/2012

6

� What’s the size of the largest connected
component?

For much more on graphs, take MA/CSSE 473 or MA 477For much more on graphs, take MA/CSSE 473 or MA 477For much more on graphs, take MA/CSSE 473 or MA 477For much more on graphs, take MA/CSSE 473 or MA 477

Efficiently putting 5 pounds of
data in a 20 pound bag

4/22/2012

7

� Functionality: Functionality: Functionality: Functionality: A HashMap implements a finite
function H: K→V

◦ domain of H is the set K of possible keys,

◦ range is the set V of possible values

� Main operations:Main operations:Main operations:Main operations: put(k, v), get(k), remove(k)

� Representation: Representation: Representation: Representation: Actual table data is stored in a
large array array array array of key-value pairs

� A HashSetHashSetHashSetHashSet uses a HashMap internally

◦ Pay attention to keys; ignore the values.

� Speed:Speed:Speed:Speed: Insertion and lookup are constant time

◦ with a good “hash function”

◦ and a large storage array On
average

5555

� If we have a collection of nnnn key-value
pairs whose keys are unique integers in
the range 0 .. mmmm----1111, where mmmm >= nnnn,

� then we can store the items in a direct
address table, T[m]T[m]T[m]T[m],
◦ where T[k] T[k] T[k] T[k] is either null or contains the

key-value pair for key k.

� Searching a direct address table is
clearly an O(1)O(1)O(1)O(1) operation:
◦ if T[k] is not null, get(k) returns

T[k].T[k].T[k].T[k].valuevaluevaluevalue
◦ otherwise returns null

Contents of this
slide are from
John Morris,
University of
Western
Australia.
Adapted by
Claude
Anderson

4/22/2012

8

� There are two main constraints:
1. keys must be positive integers
2. the set of possible keys must be

severely bounded
� largest key must be less than table size

The second constraint is often
impossible to meet

And what if the domain of our map is
some non-integer type?

6666

hashCodehashCodehashCodehashCode()()()()kkkkey ey ey ey ���� ���� integerintegerintegerinteger

A good hashCode() function
evenly distributes the keys, like:

hashCode("ate")= 48594983
hashCode("ape")= 76849201
hashCode("awe") = 14893202

Each class Each class Each class Each class
has its own has its own has its own has its own
hashCodehashCodehashCodehashCode() () () ()

method. method. method. method.
Default Default Default Default

method is method is method is method is
inherited inherited inherited inherited

from Object from Object from Object from Object
class.class.class.class.

Starting Starting Starting Starting
point for point for point for point for

determining determining determining determining
index in the index in the index in the index in the

array for array for array for array for
this key. this key. this key. this key.

What can What can What can What can
go wrong?go wrong?go wrong?go wrong?

4/22/2012

9

� Example: if m = 100:

hashCode(“ate”)= 48594983
hashCode(“ape”)= 76849201
hashCode(“awe”) = 1489036

modmodmodmod
�83
�01
�36

� Every Java object has a hashCodehashCodehashCodehashCode
method that returns an integer H

◦ It uses H % m H % m H % m H % m as the index into the array

◦ Unless this position is already occupied

a “collision”

7777----8888

hashCodehashCodehashCodehashCode()()()()"ate""ate""ate""ate"���� Mod 100Mod 100Mod 100Mod 100���� 48594983� ���� 83 ate

…………
82
83
84
…………

4/22/2012

10

� Should we just inherit it?

� JDK classes override the hashCodehashCodehashCodehashCode()()()() method

� If you plan to use instances of your class as
keys in a hash table, you probably should
too!

� Should be fast to compute

� Should distribute keys as evenly as possible

� These two goals are often contradictory; we
need to achieve a balance

4/22/2012

11

� Advantages?

� Disadvantages?

// This could be in the String class// This could be in the String class// This could be in the String class// This could be in the String class
public static int hash(String s) {

int total = 0;

for (int i=0; i<s.length(); i++)

total = total + s.charAt(i);

return Math.abs(total);

}

� Spreads out the values more, and anagrams not an issue.

� We can't entirely avoid collisions. Why?

� What about overflow during computation?

� Note: StringStringStringString already has a reasonable hashCode()
method; we don't have to write it ourselves.

// This could be in the String class// This could be in the String class// This could be in the String class// This could be in the String class
public static int hash(String s) {

int total = 0;

for (int i=0; i<s.length(); i++)

total = total*23 + s.charAt(i);

return Math.abs(total);

}

4/22/2012

12

� Objects that are equal (based on the equals
method) MUSTMUSTMUSTMUST have the same hashCode
values

� As much as possible, different objects should
have different hashCodes

� Beware of mutable keys!
◦ Python disallows mutable keys

� Hash tables don’t maintain sorted order
◦ So what’s cost to find min or max element?

9999

� A hash table implementation (like HashMap)
provides a “collision resolution mechanism”

� There are a variety of approaches to collision
resolution

� Fewer collisions lead to faster performance

4/22/2012

13

� Just make hashCode unique?

� Possible key values >> capacity of table
◦ Example: A key may be an array of 16 characters

◦ How many different values could there be?

� Table size << possible hashCode values

� hashCode values are taken modmodmodmod the current
table size

10101010

� Collision? Use the next available space:
◦ Try H+1, H+2, H+3, …

◦ Wrap around when we reach the end of the array

� Problem: Clustering

� Animation:
◦ http://www.cs.auckland.ac.nz/software/AlgAnim/h

ash_tables.html

11111111

4/22/2012

14

Figure 20.4
Linear probing hash
table after each
insertion

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

� Depends on Load Factor, λ:
◦ Ratio of the number of items stored to table size

◦ 0 ≤ λ ≤ 1.

� For a given λ, what is the expected number
of probes before an empty location is found?

12121212

4/22/2012

15

� For a given λ, what is the expected number
of probes before an empty location is found?

� Assume all locations are equally likely to be
occupied, and equally likely to be the next
one we look at.

� Then the probability that a given cell is full is

λ and probability that a given cell is empty is
1-λ.

� What’s the expected number?

13131313

� “Equally likely" probability is not realistic

� Clustering!Clustering!Clustering!Clustering!
◦ Blocks of occupied cells are formed

◦ Any collision in a block makes the block bigger

� Two sources of collisions:
◦ Identical hash values

◦ Hash values that hit a cluster

� Actual average number of probes for large λ:

For a proof, see Knuth, The Art of Computer Programming, Vol 3:
Searching Sorting, 2nd ed, Addision-Wesley, Reading, MA, 1998.

14141414

4/22/2012

16

� Easy to implement

� Simple code has fast run time per probe

� Works well when load is low

◦ It could be more efficient to just get a bigger table
and compute new locations for each item when
table starts to fill.

◦ Typically done in practice: rehash to an array that is
double in size once the load factor goes over 0.75

� What about other fast, easy-to-implement
strategies?

� Linear probing:
◦ Collision at H? Try H, H+1, H+2, H+3,...

◦ Guaranteed to succeed if array not completely full?

� Quadratic probing:
◦ Collision at H? Try H, H+12. H+22, H+32, ...

◦ Eliminates primary clustering, but can cause
“secondary clustering”

◦ Will it always succeed?

4/22/2012

17

� Choose a prime number p for the array sizeChoose a prime number p for the array sizeChoose a prime number p for the array sizeChoose a prime number p for the array size

� Then if λ ≤ 0.5:
◦ Guaranteed insertion

� If there is a “hole”, we’ll find it

◦ No cell is probed twice

� See proof of Theorem 20.4 (done in CSSE
473):
◦ Suppose that we repeat a probe before trying more

than half the slots in the table

◦ See that this leads to a contradiction

� Contradicts fact that the table size is prime

15151515

� Use an algebraic trick to calculate next index
to try

◦ Replaces modmodmodmod and general multiplication

◦ Difference between successive probes yields:

� Probe i location, Hi = (Hi-1 + 2i – 1) % M

◦ Just use bit shift to “multiply” i by 2

◦ Don’t need mod, since i is at most M/2, so

� probeLoc= probeLoc + (i << 1) - 1;
if (probeLoc >= M)

probeLoc -= M;

4/22/2012

18

� No one has been able to analyze it!

� Experimental data shows that it works well
◦ Provided that the array size is prime, and is the

table is less than half full

� Use an array of linked linked linked linked listslistslistslists

� How would that help resolve collisions?

4/22/2012

19

16161616----18181818

� Use an array of linked linked linked linked listslistslistslists

WA6 or Editor Trees

