
Function objects and comparators

Charles McAnany

Justin Stone

[1]

Matthew Mercer

Functions as objects

// Let f represent an arbitrary function of one
// argument.
A = [x, y, z]
 [x, y, z]
map(f, A)
 [f(x), f(y), f(z)] This is awesome.

Hey, I could just use an iterator!

• Yes. Yes you could.
set

set

elem elem set

elem

set

elem elem

set

elem

elem

Iterate over this!

set

set

elem elem set

elem

set

elem elem

set

elem

elem

Map

Map Map Map

Map

// :(

Demo

[2]

Comparators

compareTo(Student other)
would be meaningless. Enter comparators! A comparator is a function* that takes

two arguments, and compares them! For example, a comp-
arator for height would be

But that requires passing a function as an argument.

We could write a sortInTermsOfHeight(Student[])
But that’s a lot of coding, especially if we’re to use
an efficient algorithm.

Can we sort Student[]?

sortWithComparators(
Student[], heightComparator);

[1]http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/pictures/turingMachine.gif
[2] http://www.seosmarty.com/impossible-captcha-it-doesnt-really-matter-if-you-are-human-or-
not/

Basic Comparator Code

• Arrays class provides static sort method for
integers, floating-numbers, and objects

int[] a = “…”;
Arrays.sort(a);

• Objects need to belong to Comparable
public class Coin implements Comparable {
 public int compareTo(Object otherObject) {
 Coin other = (Coin) otherObject;
 if (value < other.value) return -1;
 if (value == other.value) return 0;
 return 1;
 }
}

Basic Comparator Code

• Once your class implements Comparable, you
can pass an array of the objects to the
Arrays.sort() method
– Coin[] coins = new Coin[n];

– Arrays.sort(coins);

• Use sort from Collections class for array lists
– ArrayList<Coin> coins = new ArrayList<Coin>;

– Collections.sort(coins);

Rules of Comparators

• Total ordering relationship

– Antisymmetric:

• If a.compareTo(b) <= 0, then b.compareTo(a) >= 0

– Reflexive:

• a.compareTo(a) = 0

– Transitive:

• If a.compareTo(b) <= 0 and b.compareTo(c) <= 0, then
a.compareTo(c) <= 0

Common Errors

• If (a.compareTo(b) == -1) // Wrong

• If (a.compareTo(b) < 0) // Right

Parameterized Comparable Interface

• Comparable interface is now a parameterized
type

public class Coin implements Comparable<Coin> {

… /* earlier compareTo() code */

}

• No casting object parameters

Demo

