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Functions as objects 

// Let f represent an arbitrary function of one 
// argument.  
A = [x, y, z] 
                           [x, y, z] 
map(f, A) 
                       [f(x), f(y), f(z)] This is awesome.  



Hey, I could just use an iterator! 

• Yes. Yes you could.  
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Iterate over this! 
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// :( 
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Comparators 

compareTo(Student other)  
would be meaningless.  Enter comparators! A comparator is a function* that takes  

two arguments, and compares them! For example, a comp- 
arator for height would be  

But that requires passing a function as an argument.  

We could write a sortInTermsOfHeight(Student[]) 
But that’s a lot of coding, especially if we’re to use  
an efficient algorithm.  

Can we sort Student[]? 
 

sortWithComparators( 
Student[], heightComparator); 



 
[1]http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/pictures/turingMachine.gif 
[2] http://www.seosmarty.com/impossible-captcha-it-doesnt-really-matter-if-you-are-human-or-
not/ 



Basic Comparator Code 

• Arrays class provides static sort method for 
integers, floating-numbers, and objects 

int[] a = “…”; 
Arrays.sort(a); 

• Objects need to belong to Comparable 
public class Coin implements Comparable { 
 public int compareTo(Object otherObject) { 
  Coin other = (Coin) otherObject; 
  if (value < other.value) return -1; 
  if (value == other.value) return 0; 
  return 1; 
 } 
} 



Basic Comparator Code 

• Once your class implements Comparable, you 
can pass an array of the objects to the 
Arrays.sort() method 
– Coin[] coins = new Coin[n]; 

– Arrays.sort(coins); 

• Use sort from Collections class for array lists 
– ArrayList<Coin> coins = new ArrayList<Coin>; 

– Collections.sort(coins); 



Rules of Comparators 

• Total ordering relationship 

– Antisymmetric: 

• If a.compareTo(b) <= 0, then b.compareTo(a) >= 0 

– Reflexive: 

• a.compareTo(a) = 0 

– Transitive: 

• If a.compareTo(b) <= 0 and b.compareTo(c) <= 0, then 
a.compareTo(c) <= 0 



Common Errors 

• If (a.compareTo(b) == -1)  // Wrong 

• If (a.compareTo(b) < 0)  // Right 



Parameterized Comparable Interface 

• Comparable interface is now a parameterized 
type 

public class Coin implements Comparable<Coin> { 

… /* earlier compareTo() code */ 

} 

• No casting object parameters 
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