
Searching: Sections 14.5-14.6
Ted Samore

John MacAslan

Eric Vernon

Methods of Searching

 Linear Search

◦ Step through each piece of data individually

◦ Data does not need to be sorted

 Binary Search

◦ Continually cuts the dataset in half

◦ Requires the data to be sorted

Linear Search

 O(n)

 Example:
An array consists of {4, 2, 6, 8, 10, 11}, and a user wants to find the

index of the number 8.

The searching algorithm will check 4, and see that 4 does not equal 8.

It then checks 2, 6, and finally 8 before returning “3”.

If the user searches for any element not inside the dataset, the

algorithm will return “-1”.

Binary Search

 O(log n)

 Requires presorted data

 Example:
An array consists of {2, 4, 7, 9, 11, 17, 25}, and a user wants to find the

index of the number 7.

The algorithm will examine the middle element, 4. Since 9 is greater

than 4, the algorithm knows it only needs to consider elements with

smaller indices than 9 - the subset {2, 4, 7}.

It then repeats the process and examines the middle element, 4. Since

4 equals 4, it returns the correct index of “1”.

If the user searches for any element not inside the dataset, the

algorithm will return “-1”.

Arrays.binarySearch

 The Arrays class has a nifty static function,

binarySearch.

 If the object is not found, it tells you

where the object would go.

 Useful for keeping an array sorted.

 Example:
int[] a = {1, 4, 9};

int v = 7;

int pos = Arrays.binarySearch(a, v);

// pos = (-k – 1) = -3

When to Use Which

 If your data is already sorted:

◦ Use a binary search!

 If your data is not already sorted:

◦ Are you going to need to search this data

multiple times?

 If yes, it’s worth it to sort the data, then binary

search

 If not, just use a linear search

Activity

Demo

Wrap-Up

 Questions?

 Problems with the quiz?

