Lists and lterators

CSSE 221
Fundamentals of Software Development Honors
Rose-Hulman Institute of Technology

TTTTTTTTTTTTTTTTTTTTT

Announcements

TTTTTTTTTTTTTTTTTTTTT

Understanding the engineering trade-offs when storing data

Data Structures

TTTTTTTTTTTTTTTTTTTTT

Data Structures

» Efficient ways to store data based on how
we’ll use it

* So far we've seen ArrayLists
— Fast addition to end of list
— Fast access to any existing position
— Slow Inserts to and deletes from middle of list

TTTTTTTTTTTTTTTTTTTTT

Data Structures and the Java
Collections Framework

* An approach to storing several items of the
same type.

* Three aspects:

— Implementation (sometimes several alternate
implementations)

TTTTTTTTTTTTTTTTTTTTT

Another List Data Structure

 What If we have to add/remove data from a
list frequently?
* A LinkedList supports this:

— Fast insertion and removal of elements
* Once we know where they go

— Slow access to arbitrary elements
— Sketch one now

“random access”

TTTTTTTTTTTTTTTTTTTTT

LinkedList<E> methods

e void addFirst(E element)
« E getFirst()
 E removeFirst()

e E get(int k)

TTTTTTTTTTTTTTTTTTTTT

LinkedList<E> iterator

 What If you want to access the rest of the
lIst?
: Iterator<E> iterator()

— An Iterator<E> has methods:

e boolean hasNext()
e E next()
e E remove()

What should remove() remove?

TTTTTTTTTTTTTTTTTTTTT

Accessing the Middle of a
LinkedList

<interfaces:
lterator<E=
boolean hashNext()

E next()
void removel)

<<interfacess
terable<E:=

lterator<E= iterator()

void add(E element)
boolean hasPrevious()

cinterfaces:s
Listiterator<E=>
LinkedList<E>

E previous()

iterator() 1s what Is called a factory
method: It returns a new concrete
iterator, but using an interface type. ROSE-HULMAN

TTTTTTTTTTTTTTTTTTTTT

An Insider’s View

Enhanced For Loop What Compiler Generates
« for (String s : list) { [terator<String> iter =
// do something list.iterator();
}

while (iter.hasNext()) {
« String s = iter.next();
« // do something

° |

TTTTTTTTTTTTTTTTTTTTT

How to use linked lists and iterators

Demo

TTTTTTTTTTTTTTTTTTTTT

More with big-Oh

Abstract Data Types

TTTTTTTTTTTTTTTTTTTTT

Abstract Data Types (ADTs)

» Boil down data types (e.g., lists) to their
essential operations

» Choosing a data structure for a project then
becomes:

— ldentify the operations needed

— ldentify the abstract data type that most
efficiently supports those operations

» (Goal: that you understand several basic
abstract data types and when to use them

TTTTTTTTTTTTTTTTTTTTT

d e a[0]
Arrays o
: : a[2]
* Size must be Implementation (handled by
declared when the compiler): We have an array
th : of N items, each b bytes in size.
S array 15 Let L be the address of the all
constructed. beginning of the array.
« We access What is involved in finding the
items by index address of ali]?
What is the Big-oh time required
for an array-element lookup?
What about lookup in a 2D array a[n-2]
of n rows and m columns? a[n-1]

TTTTTTTTTTTTTTTTTTTTT

What about Array Lists?

» We said Array Lists have
— Fast addition to end of list
— Fast access to any existing position
— Slow Inserts to and deletes from middle of list

* Big-Oh runtimes of each?

TTTTTTTTTTTTTTTTTTTTT

Runtimes of LinkedList methods

e void addFirst(E element)
: E getFirst()
0 E removeFirst()

E get(int k)

To access the rest of the list: lterator<E> iterator()

— boolean hasNext()
— E next()
— E remove()

TTTTTTTTTTTTTTTTTTTTT

Summary

Operations Provided Array List Linked List
Efficiency Efficiency

Random access

Add/remove 1tem

TTTTTTTTTTTTTTTTTTTTT

Common ADTs

* Array List * Look at the

e Linked List Collections interface
o Stack NOW.

* Queue

o Set

* Map Implementations for all of these

are provided by the Java
Collections Framework in the
java.ut1il package.

TTTTTTTTTTTTTTTTTTTTT

A longer list

« Array (1D, 2D, ...)
o List
— ArrayList
— LinkedList
o Stack
* Queue
o Set

 Map (a.k.a. table, dictionary)
— HashMap
— TreeMap

What Is "special® about
each data type?

What Is each used for?

What can you say about
time required for:
adding an element?
removing an element?
finding an element?

You will know these, inside
and out, by the end of
CSSE230.

TTTTTTTTTTTTTTTTTTTTT

