Inheritance and Polymorphism

CSSE 221
Fundamentals of Software Development Honors
Rose-Hulman Institute of Technology

TTTTTTTTTTTTTTTTTTTTT



Announcements

» Capsules:

— Summary, quiz, and key each in a separate
document

— Quiz has place for students' names, questions are
numbered

— Quiz: max of 1 side
— Key is marked as such

* Look for email about my BigRational unit
tests

e Questions?

TTTTTTTTTTTTTTTTTTTTT



This week: BallWorlds assignment
* Monday:

— Intro to UML as a communication tool
— Writing methods you don't call
— Using this

e Tuesday:

* Thursday:

— Introducing next week’s assignment
— Arrays and ArrayLists
— (Using the debugger)

TTTTTTTTTTTTTTTTTTTTT



Inheritance

» Some slides inspired by Fall 2006-2007/
CSSE221 students:

— Michael Auchter
— Michael Boland
— Andrew Hettlinger

TTTTTTTTTTTTTTTTTTTTT



Inheritance
e Objects are
unique

« But they often
share similar
behavior!

TTTTTTTTTTTTTTTTTTTTT



Why not just copy-and-paste?

 Say | have an class and want to

create an class that adds
Info about wages. Why not copy-and-
paste, then modify?

TTTTTTTTTTTTTTTTTTTTT



The Basics of Inheritance

* |nheritance allows you to methods
that you've already written to create more
speclalized versions of a class.

e Syntax:
public class HourlyEmployee Employee.
Subclass Superclass
HourlyEmployee Employee

1-1, 2-1 QROSE-HULMAN

TTTTTTTTTTTTTTTTTTTTT



Some Key ldeas in Inheritance

* Code reuse

* QOverriding methods
» Protected visibility

* The “super” keyword

TTTTTTTTTTTTTTTTTTTTT



Code re-use

e The subclass all the and
methods and fields of the
superclass.

— Constructors are not inherited
— Constructors can be invoked by the subclass

 Subclass can add new methods and fields.

TTTTTTTTTTTTTTTTTTTTT



Overriding Methods

e DudThatMoves Dud

* DudThatMoves will define an method
with the same signature that overrides
Dud’s method

What do you think happens if our It's exactly the
child class doesn’t override a same as In the
method In the superclass? superclass!

TTTTTTTTTTTTTTTTTTTTT



Visibility Modifiers
* Public — Accessible by any other class in any package.

» Private — Accessible only within the class; for fields.

— Accessible only by classes within the same
package and any subclasses in other packages.

— We won't use protected fields, but use private with protected
acCcessors.

— Private fields are encapsulated

« Default (No Modifier) — Accessible by classes in the same
package but not by classes in other packages.

— Use sparingly!

1-2 QROSE-HULMAN

TTTTTTTTTTTTTTTTTTTTT



The “super” Keyword

 |t's like the word “this,” only “super’:

e [TWO uses:

— To call a superclass' method, use
super.methodName(...)

— To call a superclass' constructor, use
super(some parameter)
from the child class’ constructor

* Don't use super for fields (they're private
anyway).

1-3, 2-6 QROSE-HULMAN

TTTTTTTTTTTTTTTTTTTTT



The “super” Keyword

* Methods can call

— To do the work of the parent class method,
plus...

— Additional work for the child class

public class Workaholic extends Worker {
public void doWork () {
super .doWork () ;
drinkCoffee() ;
super .doWork () ;

TTTTTTTTTTTTTTTTTTTTT




The “super” Keyword

* Methods can call

— To do the work of the parent class method,
plus...

work for the child class

public class Workaholic extends Worker {
// If a Workaholic just worked
// like a worker, it would inherit doWork
// NEVER write code like this:
public void doWork () {
super .doWork () ;

}

TTTTTTTTTTTTTTTTTTTTT




The “super” Keyword

A common experience?

public class RoseStudent extends Worker ({
public void doWork () {
while (!'isCollapsed) {
super .doWork () ;
drinkCoffee () ;

}
super .doWork () ;

TTTTTTTTTTTTTTTTTTTTT




Rules of using super in constructors

« A super(...) call must be the first line of
the code of an object’s constructor If It Is
to be used.

TTTTTTTTTTTTTTTTTTTTT



The this Keyword

1. this.someField and this.someMethod():
nice style

2. this alone Is used to represent the whole
object: environment.addBall(this)

TTTTTTTTTTTTTTTTTTTTT



The this Keyword

calls another constructor public class Foo {

must be the first thing private String message;
called in a constructor. public Foo({
this(“This 1s sad.”);
Therefore, and }

public Foo(String s){
this.message = s;
}
}

cannot be used In
the same constructor.

TTTTTTTTTTTTTTTTTTTTT



Overriding vs. Overloading

* Recall: a method Is when a subclass
has method with the same signature (name
and parameter list) as Its superclass

— Mover’s act() and Bouncer’s act()

a method Is when two methods
have the same name, but different parameter
lists
Arrays.sort(array) and Arrays.sort(array, new ReverseSort())

2-2,2-3 QROSE-HULMAN

TTTTTTTTTTTTTTTTTTTTT



More notes

* Every object In Java extends java.lang.Object
— Don’t have to say it explicitly

— This is why every class has a basic toString() and a
basic clone() method.

o Abstract classes contain abstract
(unimplemented) methods.

— Abstract classes can't be instantiated, just
extended

o ROSE-HULMAN

TTTTTTTTTTTTTTTTTTTTT



Final notes

 What does It mean to be declared ?
can't be assigned a new value
cannot be overridden
cannot be extended

* There 1s only single inheritance In Java

1-4 QROSE-HULMAN

TTTTTTTTTTTTTTTTTTTTT



Next

* Finish the inheritancequiz

Do the Inheritance Demo linked from the
Schedule page

 Take a break

TTTTTTTTTTTTTTTTTTTTT



Polymorphism

* Polymorphism allows a reference to a superclass or
Interface to be used instead of a reference to Its
subclass

// Rectangle and Circle could implement or extend Shape
rect = new Rectangle();
circle = new Circle();

void printArea(Shape shape) {
System.out.printin(shape.getArea());

}

1-1,1-3,2-1,2-2 o TR e oo



Polymorphism

double totalArea(ArrayList<Shape> shapes) {
double totalArea = O;
for (Shape s : shapes) {
totalArea += s.getAreal();
}

return totalArea;

1-4, 2-4 ROSE-HULMAN

TTTTTTTTTTTTTTTTTTTTT



Example

* |n the bird and parrot example, consider a bird

method: Bird b = new Parrot() ;
static void printCall (Bird bird) {|printBirdCall (b) ;

System.out.println(bird.call); |Parrot p = new Parrot();
} printBirdCall (p) ;

* Generic: printBirdCall expects a Bird, but any type of
bird I1s OK.

write Parrot p = new Bird(); -there’s not
enough info!

* However, without casting, b can only use bird
methods; parrot-specific information can't be
accessed!

TTTTTTTTTTTTTTTTTTTTT



Casting and instanceof

 |f we know that b Is a Parrot, we can cast It and use
Parrot methods:

((Parrot)b).speak()

e At runtime, If b is just a Bird, the JVM will throw a
ClassCastException.

* To test this, use instanceof:

TTTTTTTTTTTTTTTTTTTTT



Late Binding: The Power of Polymorphism

HourlyEmployee h = new HourlyEmployee ("Wilma Worker", new
Date ("October", 16, 2005), 12.50, 170);

SalariedEmployee s = new SalariedEmployee ("Mark Manager",
new Date ("June", 4, 2006), 40000) ;

Employee e = null;
if (getWeekDay () .equals (“Saturday”)

e = h;
else
e = s;

System.out.println (e) ;

|s e's actual type (and
thus which toString() to

use) known at compile-
time or run-time? ROSE-HULMAN

INSTITUTE OF TECHNOLOGY



Wrap-up

* Finish the quiz and turn it In
* Finish the demo: this part iIs much shorter

TTTTTTTTTTTTTTTTTTTTT



