
CSSE 220

Coupling and Cohesion
Static variables

Please turn in your assignment at the back

Review of Design Problems

• Turn in your homework before we go over
solution

Today’s topic

• Minimize dependencies between objects when it does not
disrupt usability or extendability

– Tell don't ask

– Don't have message chains

Principles of Design (for CSSE220)
• Make sure your design allows proper functionality

– Must be able to store required information (one/many to one/many
relationships)

– Must be able to access the required information to accomplish tasks
– Data should not be duplicated (id/identifiers are OK!)

• Structure design around the data to be stored

– Nouns should become classes
– Classes should have intelligent behaviors (methods) that may operate on their

data
• Functionality should be distributed efficiently

– No class/part should get too large
– Each class should have a single responsibility it accomplishes

• Minimize dependencies between objects when it does not disrupt usability or extendability

– Tell don't ask
– Don't have message chains

• Don't duplicate code

– Similar "chunks" of code should be unified into functions
– Classes with similar features should be given common interfaces
– Classes with similar internals should be simplified using inheritance

A system tracks employee hours at a particular company. Every time any employee

starts work and stops work, the system must log it so the employee can be paid

correctly and so management knows who was working when. The system must also

print out a weekly pay report for each employee that includes total hours, the

employee's name, social security number, and employee id.

Less Dependencies Solution

More Dependencies Solution

http://www.plantuml.com/plantuml/img/bL71QiCm3BtxAqnFwTX-ONJGmGRTA6rWP-68pSIsZ2mVGkc_BqxTj6IdNMpydf_qdhH90YpPEvLw6o8mU9raS3YURCt4AECW9Vr6cLi6qoD_W0twfBJMFn0wXyTIv8kuRz17HmFYU_Uefz9R47m9NMizhky55FybsBCDieVXW95OxbHhTQx-NYjsCNRxKLu1F9OxaR7WZcWoMna-io-W8H-pO4i2heHCpTJOC8vMRZqdCCr9kuNFD4RwIvolqolKZhulvfP1h_e5L8rjCuDO2aqfjzp2qxDUFQpcy6gUGYLgNxN1q8tB_0K0
http://www.plantuml.com/plantuml/img/bL71QiCm3BtxAqnFwTX-ONJGmGRTA6rWP-68pSIsZ2mVGkc_BqxTj6IdNMpydf_qdhH90YpPEvLw6o8mU9raS3YURCt4AECW9Vr6cLi6qoD_W0twfBJMFn0wXyTIv8kuRz17HmFYU_Uefz9R47m9NMizhky55FybsBCDieVXW95OxbHhTQx-NYjsCNRxKLu1F9OxaR7WZcWoMna-io-W8H-pO4i2heHCpTJOC8vMRZqdCCr9kuNFD4RwIvolqolKZhulvfP1h_e5L8rjCuDO2aqfjzp2qxDUFQpcy6gUGYLgNxN1q8tB_0K0
http://www.plantuml.com/plantuml/img/bL7HIWCn47o_hmXzkeh-GP4A5HIq57lWyv8iDLoI3PiDSeZ_xkKkjkN01ryICfFPcKcsIO0bUzUateO835ub6HoEArizCOrsa99weimTW-wHNy46zTKefJuW68V7CkITk6_HHqS3uhEvLTFe7GW-1DDPZ-jh0SL_2GviWnnWUCD8B5UgTVDTyprMR0vskL5E0JoMFP6su8weCriPzjaNK9EFMR0Z0LTAfdOorenZb8ld188n9VOBdThFSNTqAW5gWihC0PPbPepY0ghckymWba9RnYrV-kvUhMvMvuBDkUccCjNuB-4llSLWnW_z0G00
http://www.plantuml.com/plantuml/img/bL7HIWCn47o_hmXzkeh-GP4A5HIq57lWyv8iDLoI3PiDSeZ_xkKkjkN01ryICfFPcKcsIO0bUzUateO835ub6HoEArizCOrsa99weimTW-wHNy46zTKefJuW68V7CkITk6_HHqS3uhEvLTFe7GW-1DDPZ-jh0SL_2GviWnnWUCD8B5UgTVDTyprMR0vskL5E0JoMFP6su8weCriPzjaNK9EFMR0Z0LTAfdOorenZb8ld188n9VOBdThFSNTqAW5gWihC0PPbPepY0ghckymWba9RnYrV-kvUhMvMvuBDkUccCjNuB-4llSLWnW_z0G00

In less dependencies, Employee “insulates” HourTrackerMain from the existence of

the WorkLog class. This means changes in the way WorkLog works cannot affect

Employee. Similarly, changes in Employee cannot affect WorkLog.

The less dependencies solution is also simpler. Employee fully “owns” all it’s own

data. In more dependencies, the worklog is edited without employee’s knowledge.

Less Dependencies Solution

More Dependencies Solution

HourTrackerMain
“knows” about
WorkLog, creates one,
then calls addWorkLog

http://www.plantuml.com/plantuml/img/bL71QiCm3BtxAqnFwTX-ONJGmGRTA6rWP-68pSIsZ2mVGkc_BqxTj6IdNMpydf_qdhH90YpPEvLw6o8mU9raS3YURCt4AECW9Vr6cLi6qoD_W0twfBJMFn0wXyTIv8kuRz17HmFYU_Uefz9R47m9NMizhky55FybsBCDieVXW95OxbHhTQx-NYjsCNRxKLu1F9OxaR7WZcWoMna-io-W8H-pO4i2heHCpTJOC8vMRZqdCCr9kuNFD4RwIvolqolKZhulvfP1h_e5L8rjCuDO2aqfjzp2qxDUFQpcy6gUGYLgNxN1q8tB_0K0
http://www.plantuml.com/plantuml/img/bL71QiCm3BtxAqnFwTX-ONJGmGRTA6rWP-68pSIsZ2mVGkc_BqxTj6IdNMpydf_qdhH90YpPEvLw6o8mU9raS3YURCt4AECW9Vr6cLi6qoD_W0twfBJMFn0wXyTIv8kuRz17HmFYU_Uefz9R47m9NMizhky55FybsBCDieVXW95OxbHhTQx-NYjsCNRxKLu1F9OxaR7WZcWoMna-io-W8H-pO4i2heHCpTJOC8vMRZqdCCr9kuNFD4RwIvolqolKZhulvfP1h_e5L8rjCuDO2aqfjzp2qxDUFQpcy6gUGYLgNxN1q8tB_0K0
http://www.plantuml.com/plantuml/img/bL7HIWCn47o_hmXzkeh-GP4A5HIq57lWyv8iDLoI3PiDSeZ_xkKkjkN01ryICfFPcKcsIO0bUzUateO835ub6HoEArizCOrsa99weimTW-wHNy46zTKefJuW68V7CkITk6_HHqS3uhEvLTFe7GW-1DDPZ-jh0SL_2GviWnnWUCD8B5UgTVDTyprMR0vskL5E0JoMFP6su8weCriPzjaNK9EFMR0Z0LTAfdOorenZb8ld188n9VOBdThFSNTqAW5gWihC0PPbPepY0ghckymWba9RnYrV-kvUhMvMvuBDkUccCjNuB-4llSLWnW_z0G00
http://www.plantuml.com/plantuml/img/bL7HIWCn47o_hmXzkeh-GP4A5HIq57lWyv8iDLoI3PiDSeZ_xkKkjkN01ryICfFPcKcsIO0bUzUateO835ub6HoEArizCOrsa99weimTW-wHNy46zTKefJuW68V7CkITk6_HHqS3uhEvLTFe7GW-1DDPZ-jh0SL_2GviWnnWUCD8B5UgTVDTyprMR0vskL5E0JoMFP6su8weCriPzjaNK9EFMR0Z0LTAfdOorenZb8ld188n9VOBdThFSNTqAW5gWihC0PPbPepY0ghckymWba9RnYrV-kvUhMvMvuBDkUccCjNuB-4llSLWnW_z0G00

Oftentimes you cannot remove dependencies
without breaking functionality though.

http://www.plantuml.com/plantuml/img/ROun3i8m34LtdyBgr22u0XDB1uOE7C2g8s6HXj2aGrlrxhXDAGmiblN_qxFZGtoWZbgCQN1MPoTDwbi7q3YA4UjUnYk9nmdkvDdPMs1ATedhtiOaJr--jgNY8txs2oKom1A3es6XbPAnOWE8y-xEhBeHXNMecc3-EQsL5fkcDDhj3vtEM1oAbLh3Rv2jVyXSl040
http://www.plantuml.com/plantuml/img/ROun3i8m34LtdyBgr22u0XDB1uOE7C2g8s6HXj2aGrlrxhXDAGmiblN_qxFZGtoWZbgCQN1MPoTDwbi7q3YA4UjUnYk9nmdkvDdPMs1ATedhtiOaJr--jgNY8txs2oKom1A3es6XbPAnOWE8y-xEhBeHXNMecc3-EQsL5fkcDDhj3vtEM1oAbLh3Rv2jVyXSl040

Today’s topic - #1

• Minimize dependencies between objects
when it does not disrupt usability or
extendability

– If you can see a simpler design that works use it

– But if you can’t see a simpler design than the one
that you have, at least ensure that you:

• Tell don't ask

• Don't have message chains

Tell Don’t Ask – getter methods
// Client program of region
Point2D center1 = region1.getPosition();
Point2D center2 = region2.getPosition();
double dist = center1.distance(center2);
if(dist > region1.getRadius()) {

region1.setIsOverlapping(true);
}
// This code is determining if two regions intersect

Sometimes you’ll have code that calls a lot of getters on some
other object. In essence, this code is Asking for a lot of
information from the region object.

Note how much this code “knows” about the Region class. It
knows about many of its fields. It has a very strong dependency
on the Region class.

Many
ASKS

Tell Don’t Ask
Use Procedural Abstraction

region1.flagOverlappingWith(region2);

When client uses a collection of getters to do some computation,
then that computation is a good candidate to become a new
method in the called-upon class

In this code, we’ve moved the center point and distance
calculations into the Region class. Now rather than asking the
Region for all sorts of data we simply tell the region to handle the
problem itself and rely on it to do it.

Now, because we rely on the Region object to handle its own
data, we have a weaker dependence on the region object.

TELL

Asking is especially bad design when you return some internal
object that the caller/client would otherwise not know exists. Why
does the caller want the emailClient? Maybe that should be a tell?

Violates “separation of concerns” – Client now knows “how” the
called on code works. This increases “coupling” between client and
called-on class/code, high coupling is usually poorer design choice

If the caller only needs to do one thing, just add a method to do
that thing and insulate the caller from dependence on
EmailClient.

public void pruneContactList() {
this.emailClient.removeDupContacts();

}

TELL

public EmailClient getEmailClient() {
return this.emailClient;

}

ASK

Tell Don’t Ask – Bad Design

Tell Don’t Ask

• Be wary of getter methods

• Prefer methods that command (tell) a class to
do something and be responsible for its own
state and responsibilities

• If client code in class A accesses a lot of
internal data of another class, B, consider if a
tell method in that other class, B, might
improve the design

A simple example of Tell Don’t Ask

In your TeamGradebook classes, you need to
calculate a student’s average grade. This could
be accomplished by:

1) Adding a getAverage() method to the Student
class that calculates the average

2) Adding a getGrades() method to the student
class, which the TeamGradebook class could
call, and then use to compute the average

A simple example of Tell Don’t Ask

In your TeamGradebook classes, you need to
calculate a student’s average grade. This could
be accomplished by:

1) Adding a getAverage() method to the Student
class that calculates the average

This approach engineers Student class so that it
“knows” more about what goes on with
Students, and TeamGradeBook “knows” less

A simple example of Tell Don’t Ask

In your TeamGradebook classes, you need to
calculate a student’s average grade. This could
be accomplished by:

Second approach increases coupling between
TeamGradeBook and Student class, i.e.,
TeamGradBook “knows” more about Student

2) Adding a getGrades() method to the student
class, which the TeamGradebook class could
call, and then use to compute the average

Diagrams look similar!

http://www.plantuml.com/plantuml/img/bP5D3e8m48NtFSN4bHYzW3444XCswaOlCD094cWnRJ4nXBlR5X3Ypy9DqybxtyphDD86bMb4nNHPo1ig5A3Deo9xgYBp2iigr1ekX29Ho2cjw_A8XMpP5IMlAERyR1fEqYpF5fAvPNrvGa71P78DHeUnToUl8LOA7uT2crqlXI18fAISgcUq7_s9yxf9RThSgQCx8HFVIM5Etm9j1uO1wuQd3V5R1W038QtLbLEylQV2VfHsMZxD2U3LjfilxA-M7VlOCMn2MAmMOyBV1YTuzPs8I7BtYqy0
http://www.plantuml.com/plantuml/img/bP5D3e8m48NtFSN4bHYzW3444XCswaOlCD094cWnRJ4nXBlR5X3Ypy9DqybxtyphDD86bMb4nNHPo1ig5A3Deo9xgYBp2iigr1ekX29Ho2cjw_A8XMpP5IMlAERyR1fEqYpF5fAvPNrvGa71P78DHeUnToUl8LOA7uT2crqlXI18fAISgcUq7_s9yxf9RThSgQCx8HFVIM5Etm9j1uO1wuQd3V5R1W038QtLbLEylQV2VfHsMZxD2U3LjfilxA-M7VlOCMn2MAmMOyBV1YTuzPs8I7BtYqy0
http://www.plantuml.com/plantuml/img/bP712i8m38RlVOhWIKLVG6Gu4Boe5ts1p8OvN3jfCa76tjssRYXE3rvAm_V_oTzqnO9EQbCglXJsYWuDiDnBygShJf6eKudCS2Gq6uUQiggwxB2mZJgZrIMbMX-arcHbVF0cctjlBFTeQF8IXGQzGlmzu1capk5zMx0idoW1GoOZ5oY_kUFeeLrNTURJve7swWr9UYE7ENqBjEWy2bJRFQsBtoW0w1pMIqFvYhUEhkGvYWFBIM8g7azWCLJwzc-h-wjvgmRRXda2e-cep_fR442aduuLMHt-ym40
http://www.plantuml.com/plantuml/img/bP712i8m38RlVOhWIKLVG6Gu4Boe5ts1p8OvN3jfCa76tjssRYXE3rvAm_V_oTzqnO9EQbCglXJsYWuDiDnBygShJf6eKudCS2Gq6uUQiggwxB2mZJgZrIMbMX-arcHbVF0cctjlBFTeQF8IXGQzGlmzu1capk5zMx0idoW1GoOZ5oY_kUFeeLrNTURJve7swWr9UYE7ENqBjEWy2bJRFQsBtoW0w1pMIqFvYhUEhkGvYWFBIM8g7azWCLJwzc-h-wjvgmRRXda2e-cep_fR442aduuLMHt-ym40

Diagrams look similar!

How would the actual code
compare when performing the
stated task “calculate a student’s
average grade”?

getGrades()

public class TeamGradebook {

…

private String handleGetAverage(String studentName) {

Student student = getStudentByName(studentName);

if (student == null) {

return "student " + student + " not found";

}

double total = 0;

for (double d: student.getGrades()) {

total += d;

}

double average = total / student.getGrades().size();

return Long.toString(Math.round(average));

}

…

}

Calculation happening in TeamGradebook!

getAverage()

public class TeamGradebook {

…

private String handleGetAverage(String studentName) {

Student student = getStudentByName(studentName);

if (student == null) {

return "student " + student + " not found";

}

return Long.toString(Math.round(student.getAverage()));

}

…

}

Calculation happening in Student!

Why does this improve the design?

Reduces coupling between two classes:

• It makes the Student object more featureful,
and puts the code in an expected place

• Reduces the code in TeamGradebook which is
already quite long

• Allows you to change how the grades are
represented in TeamGradebook, should you
wish to (i.e. drop lowest score)

Employee Salary Problem
In-Class Quiz Questions #1 & #2

There is a company that has employees, each of which has a
salary. There are managers that oversee other employees.
Employees have salaries that can be updated from time to time.
Unlike employees, a manager’s salary is always 10% more than
the salary of their top paid employee.

http://www.plantuml.com/plantuml/img/NL0n3i8m3Dpp2giJHV213gWBOYfBnGFSnYeHYLCbwL0X_axIbWXOBFdkT7TsxGEwC1aj_4FnY0uD-31hYjEfVc54hz5xQ53nKm3SaQMcsoWnqDcCsiv4BMfqymuO3Ht0BnkKMNoXi2cI0CeAf9qwJUArUNzyad-ILD36U1xYQf1n87VzHPLlLho2pbfDo15SSxDv17Bk7vUg3PaiuQjGElDuWc9Vv5QY9fRf4sy0
http://www.plantuml.com/plantuml/img/NL0n3i8m3Dpp2giJHV213gWBOYfBnGFSnYeHYLCbwL0X_axIbWXOBFdkT7TsxGEwC1aj_4FnY0uD-31hYjEfVc54hz5xQ53nKm3SaQMcsoWnqDcCsiv4BMfqymuO3Ht0BnkKMNoXi2cI0CeAf9qwJUArUNzyad-ILD36U1xYQf1n87VzHPLlLho2pbfDo15SSxDv17Bk7vUg3PaiuQjGElDuWc9Vv5QY9fRf4sy0

Employee Salary Problem
In-Class Quiz Questions #1 & #2

http://www.plantuml.com/plantuml/img/NL0n3i8m3Dpp2giJHV213gWBOYfBnGFSnYeHYLCbwL0X_axIbWXOBFdkT7TsxGEwC1aj_4FnY0uD-31hYjEfVc54hz5xQ53nKm3SaQMcsoWnqDcCsiv4BMfqymuO3Ht0BnkKMNoXi2cI0CeAf9qwJUArUNzyad-ILD36U1xYQf1n87VzHPLlLho2pbfDo15SSxDv17Bk7vUg3PaiuQjGElDuWc9Vv5QY9fRf4sy0
http://www.plantuml.com/plantuml/img/NL0n3i8m3Dpp2giJHV213gWBOYfBnGFSnYeHYLCbwL0X_axIbWXOBFdkT7TsxGEwC1aj_4FnY0uD-31hYjEfVc54hz5xQ53nKm3SaQMcsoWnqDcCsiv4BMfqymuO3Ht0BnkKMNoXi2cI0CeAf9qwJUArUNzyad-ILD36U1xYQf1n87VzHPLlLho2pbfDo15SSxDv17Bk7vUg3PaiuQjGElDuWc9Vv5QY9fRf4sy0

Better Solution

• Anything wrong?

• Room to improve?

http://www.plantuml.com/plantuml/img/ZP2n3i8W48PtdkBIoHfzWGwcYt5oQdo0irng8r32qQ4nlhlGKj8u61VWxl_vFxYQFJe_QYNusHkB3ZMmdnI5rVNjhBGAcU6AlNa9W0SQgUXc9NewQwk6YQX1XMxQWK5D1-2vWZARB-IJ8ngWh40EursHUETiWnsv61yT5JG1RhfGBbdv0a0xQ3lwn9SfDgAw32bX0qY4zQN_83Wd9MbHVa3YR8udAFP51crxwNiYxT_EzH3wsLgJaN7s7m00
http://www.plantuml.com/plantuml/img/ZP2n3i8W48PtdkBIoHfzWGwcYt5oQdo0irng8r32qQ4nlhlGKj8u61VWxl_vFxYQFJe_QYNusHkB3ZMmdnI5rVNjhBGAcU6AlNa9W0SQgUXc9NewQwk6YQX1XMxQWK5D1-2vWZARB-IJ8ngWh40EursHUETiWnsv61yT5JG1RhfGBbdv0a0xQ3lwn9SfDgAw32bX0qY4zQN_83Wd9MbHVa3YR8udAFP51crxwNiYxT_EzH3wsLgJaN7s7m00

Eliminate manager salary field!

Data is technically duplicated if manager contains
its own salary field.
What if the two pieces of data were out of sync?
Works well to calculate the salary as needed since
it depends upon other data.

http://www.plantuml.com/plantuml/img/RL2z3i8W4DvvYaidQ_G5EfWknicfyG5EkDJ6WpP01s9yTw4YQHeNoDtt2wtpQFsiMRZdO2QqgC7vm1HFEyW54PBHERZYO5u2u856CTqcXPxEUk8n47N8QCCE36ewW5icg0lvGZup4W7g1jGutvd4ktWRxCac-yHee8lffe-ZH9OpnwXiiDPcyQ_47_MtIP74HMcomLBPle0rh6BImuydgFPLYLhlSdUHxosp9QFIBtu0
http://www.plantuml.com/plantuml/img/RL2z3i8W4DvvYaidQ_G5EfWknicfyG5EkDJ6WpP01s9yTw4YQHeNoDtt2wtpQFsiMRZdO2QqgC7vm1HFEyW54PBHERZYO5u2u856CTqcXPxEUk8n47N8QCCE36ewW5icg0lvGZup4W7g1jGutvd4ktWRxCac-yHee8lffe-ZH9OpnwXiiDPcyQ_47_MtIP74HMcomLBPle0rh6BImuydgFPLYLhlSdUHxosp9QFIBtu0

Today’s topic - #2

• Minimize dependencies between objects
when it does not disrupt usability or
extendability

– If you can see a simpler design that works use it

– But if you can’t see a simpler design than the one
that you have, at least ensure that you:

• Tell don't ask

• Don't have message chains

• When one class requires another class to do its
job, the first class depends on the second

• Shown on UML
diagrams as:

– dashed line

– with open arrowhead

UML Interlude: Dependency
Relationship

RegistrationProcesser

verifyEnrollment(students: ArrayList<Student>)
…

Student

isEnrolled(): boolean

Message Chain – Don’t Have Them
A message chain is code in the form:

someObject.someMethod().otherMethod().stillOtherMethod();

For example

myFrame.getBufferStrategy().getCapabilities().getFlip().wait(17);

This is generally considered to be a warning sign of excessive dependency and problems.

Message Chain
Rewritten using variables

Message chains are not better if you space them across multiple lines, but it does make it
more obvious what the problem is.

BufferStrategy strategy = myFrame.getBufferStrategy();
BufferCapabilities capabilities = strategy.getCapabilities();
FlipContents flip = capabilities.getFlipContents();
flip.wait(17);

You are depending on internal classes deep within some other object’s data

Message Chain
Rewritten using variables

Message chains are not better if you space them across multiple lines, but it does make it
more obvious what the problem is.

BufferStrategy strategy = myFrame.getBufferStrategy();
BufferCapabilities capabilities = strategy.getCapabilities();
FlipContents flip = capabilities.getFlipContents();
flip.wait(17);

You are depending on internal classes deep within some other object’s data

Client program – “knows” details 4 levels deep in called ops
So client is highly coupled with “how” things work

Message Chain: Solution
The solution is usually to embed the required feature in the first class in the chain. This
insulates the caller from the inner classes. Then the first class might implement the
feature itself OR if it still needs to rely on its internals repeat the message chain removal.

myFrame.setFlipWait(17);

This approach also actually decouples:
1. BufferCapabilities from FlipContents
2. BufferStrategy from BufferCapabilities
3. Jframe from BufferStrategy

Solar System Problem
In-Class Quiz Questions #4 & #5

A Java program draws a minute by minute updated diagram of
the solar system including all planets and moons. To update the
moon's position, the moon's calculations must have the updated
position of the planet it is orbiting. The diagram is colored - all
planets are drawn the same color and all moons are drawn the
same color. However, it needs to be possible to reset the planet
color or the moon color and the diagram should reflect that.

http://www.plantuml.com/plantuml/img/ZL792i8m4BtdAq9FLQnd3oA8NXL1_82X7JGuMKX6YeZ_RenRiNMvXCcycRSaOQ-C0mzQ1ZuInjEhaW-QX2W9Gf1hI-3Nny2e5w2CF0afTs0gmfdLxi2un7fbWs9bJSvAOs3GhlUScdkefqJvreFRgJAya8shW755O91dbgpF3TQfU9zPM6lQ4-SEYz6UY53vmrhLCdM-Sztif9JkvQnnIyHpOFXJfaFZ6YSfw9IhoQWVIMCjklXRDWRokwHelavHJ6GsokufHJAIzJCvBXwjz--E2urM2nvEFYr6v4f_0G00
http://www.plantuml.com/plantuml/img/ZL792i8m4BtdAq9FLQnd3oA8NXL1_82X7JGuMKX6YeZ_RenRiNMvXCcycRSaOQ-C0mzQ1ZuInjEhaW-QX2W9Gf1hI-3Nny2e5w2CF0afTs0gmfdLxi2un7fbWs9bJSvAOs3GhlUScdkefqJvreFRgJAya8shW755O91dbgpF3TQfU9zPM6lQ4-SEYz6UY53vmrhLCdM-Sztif9JkvQnnIyHpOFXJfaFZ6YSfw9IhoQWVIMCjklXRDWRokwHelavHJ6GsokufHJAIzJCvBXwjz--E2urM2nvEFYr6v4f_0G00

• What is wrong here?

http://www.plantuml.com/plantuml/img/ZL792i8m4BtdAq9FLQnd3oA8NXL1_82X7JGuMKX6YeZ_RenRiNMvXCcycRSaOQ-C0mzQ1ZuInjEhaW-QX2W9Gf1hI-3Nny2e5w2CF0afTs0gmfdLxi2un7fbWs9bJSvAOs3GhlUScdkefqJvreFRgJAya8shW755O91dbgpF3TQfU9zPM6lQ4-SEYz6UY53vmrhLCdM-Sztif9JkvQnnIyHpOFXJfaFZ6YSfw9IhoQWVIMCjklXRDWRokwHelavHJ6GsokufHJAIzJCvBXwjz--E2urM2nvEFYr6v4f_0G00
http://www.plantuml.com/plantuml/img/ZL792i8m4BtdAq9FLQnd3oA8NXL1_82X7JGuMKX6YeZ_RenRiNMvXCcycRSaOQ-C0mzQ1ZuInjEhaW-QX2W9Gf1hI-3Nny2e5w2CF0afTs0gmfdLxi2un7fbWs9bJSvAOs3GhlUScdkefqJvreFRgJAya8shW755O91dbgpF3TQfU9zPM6lQ4-SEYz6UY53vmrhLCdM-Sztif9JkvQnnIyHpOFXJfaFZ6YSfw9IhoQWVIMCjklXRDWRokwHelavHJ6GsokufHJAIzJCvBXwjz--E2urM2nvEFYr6v4f_0G00

• What is wrong here?

4b. methodChain to update a moon

ss.getPlanets().get(0).getMoons().get(0).setColor(color);

http://www.plantuml.com/plantuml/img/ZL792i8m4BtdAq9FLQnd3oA8NXL1_82X7JGuMKX6YeZ_RenRiNMvXCcycRSaOQ-C0mzQ1ZuInjEhaW-QX2W9Gf1hI-3Nny2e5w2CF0afTs0gmfdLxi2un7fbWs9bJSvAOs3GhlUScdkefqJvreFRgJAya8shW755O91dbgpF3TQfU9zPM6lQ4-SEYz6UY53vmrhLCdM-Sztif9JkvQnnIyHpOFXJfaFZ6YSfw9IhoQWVIMCjklXRDWRokwHelavHJ6GsokufHJAIzJCvBXwjz--E2urM2nvEFYr6v4f_0G00
http://www.plantuml.com/plantuml/img/ZL792i8m4BtdAq9FLQnd3oA8NXL1_82X7JGuMKX6YeZ_RenRiNMvXCcycRSaOQ-C0mzQ1ZuInjEhaW-QX2W9Gf1hI-3Nny2e5w2CF0afTs0gmfdLxi2un7fbWs9bJSvAOs3GhlUScdkefqJvreFRgJAya8shW755O91dbgpF3TQfU9zPM6lQ4-SEYz6UY53vmrhLCdM-Sztif9JkvQnnIyHpOFXJfaFZ6YSfw9IhoQWVIMCjklXRDWRokwHelavHJ6GsokufHJAIzJCvBXwjz--E2urM2nvEFYr6v4f_0G00

Partial Solution

http://www.plantuml.com/plantuml/img/bP9DQyCm38Rl-HKcftGiznv6ORJNbaBP3n2EQCta3ooLK4R_UpqtQTAcxEDYZFHQxoF9_6bSW0XMiPm8qncDbgEbej04p6hd2UBkn89s3SQfhqAf0xY6SEbjE0fkiDrwDcAygyHOP04RPZVLAaBxJbJj8uI3qJnaFa83Wbi2XxBqv6FbiCsNHytQUpTLd9yWPZn66LVL_OCK7ohTelgNDff90-VEzsgIBKFdbqkjG20NJWv_DBWR3p-RnntyaEXPldEPn6RHcED7aWdug_etN5h4U0LrlL3blEp6KsIoygLKRtKVUlnJwS4eT040
http://www.plantuml.com/plantuml/img/bP9DQyCm38Rl-HKcftGiznv6ORJNbaBP3n2EQCta3ooLK4R_UpqtQTAcxEDYZFHQxoF9_6bSW0XMiPm8qncDbgEbej04p6hd2UBkn89s3SQfhqAf0xY6SEbjE0fkiDrwDcAygyHOP04RPZVLAaBxJbJj8uI3qJnaFa83Wbi2XxBqv6FbiCsNHytQUpTLd9yWPZn66LVL_OCK7ohTelgNDff90-VEzsgIBKFdbqkjG20NJWv_DBWR3p-RnntyaEXPldEPn6RHcED7aWdug_etN5h4U0LrlL3blEp6KsIoygLKRtKVUlnJwS4eT040

Better Solution
Eliminate Data Duplication

http://www.plantuml.com/plantuml/img/ZPBB2i8m44Nt-OhGLPLsxq84qQqY53zWQ0SDJXua8wM8_swDZrOhwYPCvd7lcP1mKCQ11oq3DuJjwLN9Hqr2b0GXoC8I-A89Z7e5oiYJa78FfY9SMEsEZ6kiDpOeLjQah3G61kr6pwwbXtfEbEuykBqgGrVPkWeODmG6UM79-jHW7OFtdfMrPjXn_e0OyLmdsTxqOxYDon_8rG3sVFUuORx8HwabCFmf_5JD-eHP1zYvNHUENhVQ3wS1K2Q_cR_uYVxZvVbC9fFalgo85CauaTFyaNh_3Ur0BtK1
http://www.plantuml.com/plantuml/img/ZPBB2i8m44Nt-OhGLPLsxq84qQqY53zWQ0SDJXua8wM8_swDZrOhwYPCvd7lcP1mKCQ11oq3DuJjwLN9Hqr2b0GXoC8I-A89Z7e5oiYJa78FfY9SMEsEZ6kiDpOeLjQah3G61kr6pwwbXtfEbEuykBqgGrVPkWeODmG6UM79-jHW7OFtdfMrPjXn_e0OyLmdsTxqOxYDon_8rG3sVFUuORx8HwabCFmf_5JD-eHP1zYvNHUENhVQ3wS1K2Q_cR_uYVxZvVbC9fFalgo85CauaTFyaNh_3Ur0BtK1

Today’s topic

• Minimize dependencies between objects when it does
not disrupt usability or extendability
– If you can see a simpler design that works use it
– But if you can’t see a simpler design than the one that you

have, at least ensure that you:
• Tell don't ask
• Don't have message chains

• Now two related terms:
– coupling
– cohesion

Goals

• Learn 3 essential object oriented design
terms:

– Encapsulation (done- last class)

– Coupling

– Cohesion

• Static fields (if we have time)

Coupling and Cohesion

• Two terms you need to memorize

• Good designs have:
– High coHesion

– Low coupLing

Consider the opposite:

• Low cohesion means that you have a small
number of really large classes that do too much
stuff (i.e., do more than one thing)

• High coupling means you have many classes that
depend (“know”) too much on each other

Imagine I want to make a Video Game.
Here are two classes in my design.

Which is more cohesive?

GameRunner

main(args:String)
loadLevel(levelName:String)
moveEnemies()
drawLevel(g:Graphics2D)
computeScore():int
computeEnemyDamage()
handlePlayerInput()
doPowerups(…)
runCutscene(cutsceneName:String)
//some more stuff

Image

loadImageFile(filename:String)
setPosition(x:int,y:int)
drawImage(g:Graphics2D)

*Note that in both these classes I’ve omitted the fields for clarity

Imagine I want to make a Video Game.
Here are two classes in my design.

Which is more cohesive?

GameRunner

main(args:String)
loadLevel(levelName:String)
moveEnemies()
drawLevel(g:Graphics2D)
computeScore():int
computeEnemyDamage()
handlePlayerInput()
doPowerups(…)
runCutscene(cutsceneName:String)
//some more stuff

Image

loadImageFile(filename:String)
setPosition(x:int,y:int)
drawImage(g:Graphics2D)

*Note that in both these classes I’ve omitted the fields for clarity

GameRunner does:
1. moves
2. draws
3. compute score
4. compute damage
5. … etc.

Cohesion – From Textbook

• A class should represent a single concept. All
interface features should be closely related to
the single concept that the class represents.
Such a class is said to be cohesive.

- Your textbook

On to coupling...

Coupling

//do setup must be called first

this.myB.doSetup(1, 2, 3);

//now we compute the parameter

double distance = computeDistanceForB(0,0,0);

this.myB.setDistance(distance);

//finally we display

this.myB.display();

• Coupling is when one object depends strongly on another

Note that in this design, GameRunner probably had
many objects of the image class, but Image does not

know the GameRunner class even exists. That’s a sign
of low coupling between Image and GameRunner.

GameRunner

main(args:String)
loadLevel(levelName:String)
moveEnemies()
drawLevel(g:Graphics2D)
computeScore():int
computeEnemyDamage()
handlePlayerInput()
doPowerups(…)
runCutscene(cutsceneName:String)
//some more stuff

Image

loadImageFile(filename:String)
setPosition(x:int,y:int)
drawImage(g:Graphics2D)

• Lot’s of dependencies high coupling

• Few dependencies low coupling

Coupling – UML Diagrams

How hard will it be to change code with:
High coupling? Low coupling?

• Note:

• “essential” dependencies cannot be eliminated

• if they are eliminated, then functionality fails

Coupling – UML Diagrams

If we do our design job carefully

• Divide & Conquer - Break our larger problem
into several classes

• Each of these classes will do one thing well
(i.e. they will have high cohesion)

• Our classes will only need to depend on each
other in specific, highly limited essential ways
(i.e. they will have low coupling).

• Many classes won’t even “know” of most of
the other classes in the system

Note that

• Cohesion makes us want:

– Many smaller classes

– Classes that do only one thing well

• If classes are too small

– Tend to need to depend on each other

– Coupling rises

• Want “Goldilocks” design

Next Up Static variables

• If time allows!

Rule of Thumb: No Global Variables

• Or static variables that are used like globals

• A static variable can be accessed/modified in
any function at any time

• As a result many parts of the code can be
coupled to a single class

Rule of Thumb: No Global Variables

• Or static variables that are used like globals

• A static variable can be accessed/modified in any
function at any time

• As a result many parts of the code can be coupled
to a single class

• Why?

• Increases coupling among all the clients that get
or change value of the global variable

Stop Here Today

• ImplementingDesign2 – see due date on schedule page

• DesignProblem3 – see due date on schedule page

• Due tonight submit via your git repo:
– Implementation of ImplementingDesign1 in code (20 points)

– Demonstrating functionality in main!

– Final UML: submit to repo along with other files (5 points)

– Reflection on the process: reflection_questions.txt (5 points)

• Exam1 Wrapper: Due first class after break
– optional assignment to reflect on exam prep and to earn back % of

points on Exam1

– Complete Moodle Survey

Reminders

ImplementingDesign2
Notes:

• You will be given a starter uml file for plantuml

• You must pass the unit tests, but don’t approach
this by trying to a pass one test at a time

• Instead test functionality as you go by running
commands

– Make a UML DESIGN BEFORE you code

– It is required that you submit a first draft

– (It does not have to be perfect, we expect you to have
to change)

