CSSE 220 Day 17

Inheritance

Check out /nheritance from SVN

Questions

Nested classes

» You can define a class inside another class
o This is called a
> |t has access to the outer class’ fields and methods

- Useful if the inside class is a “helper class” of interest only
to the outside class

» You can define a class and construct an instance of
it inside a method
o This is called a

- Useful if the class is small and the object refers to variables
in the outside class

» You can even make the inside class anonymous.

> This is called an
- Let’s do an example

This nomenclature is not universal. See

Ql

for more than you could possibly want to know about this subject

http://blogs.sun.com/darcy/entry/nested_inner_member_and_top

Homework part 1

» LinearLightsOut
» Individual assignment

» Show you internalized what you learned from
SwingDemo

» Anonymous listeners could help (but not
required)

» A good practice exam question

» Due Tuesday

> | recommend you complete through stage 5 tonight
SO you can ask questions tomorrow.

Inheritance

» Sometimes a new class is a
special case of the concept
represented by another

» Can “borrow” from an
existing class, changing just
what we need

» The new class inherits from
the existing one:

> all methods
- all instance fields

Examples

» class SavingsAccount extends BankAccount
- adds interest earning, keeps other traits

» class Employee extends Person
- adds pay info. and methods, keeps other traits

» class Manager extends Employee

- adds info. about employees managed, changes pay
mechanism, keeps other traits

.

Notation and Terminology

» class SavingsAccount extends BankAccount {
// added fields
// added methods

}

» Say “SavingsAccount is a BankAccount’
» Superclass: BankAccount

» Subclass: SavingsAccount

Q3

Inheritance in UML

The “superest”
class in Java
Object

Still means
“is a”

BankAccount

‘ SavingsAccount I
& Q4

Interfaces vs. Inheritance

» class ClickHandler implements MouselListener

> ClickHandler promises to implement all the

methods of MouseListener\¥_ e

» class CheckingAccount extends BankAccount

> CheckingAccount inherits (or overrides) all the
methods of BankAccount
\\— For

implementation
code reuse

Inheritance Run Amok?

‘ JComponent \
‘ JPanel \ ‘JT&ﬂCumpnnent\ ‘ JLabel \ ‘Ahstractauﬂnn \

‘ JTextField \ ‘ JTextArea \ ‘ JToggleButton \ ‘ JButton \
‘ JCheckBox \ ‘ JRadioButton \

With Methods, Subclasses can:

» Inherit methods unchanged

» Override methods

- Declare a new method with same signature to use
instead of superclass method

- The new method can do completely different
behavior from the overridden method, or it can do
the overridden behavior plus some new behavior

» Add entirely new methods not in superclass

Q5

With Fields, Subclasses:

» ALWAYS inherit all fields unchanged

» Can add entirely new fields not in superclass

Z DANGER! Don’t use
the same name as a

superclass field!

Q6

Super Calls

» Calling superclass method:
- super.methodName(args) ;

» Calling superclass constructor:
o super(args);

Must be the first
line of the subclass

I constructor

Q7

BankingAccount
double balance

BankingAccount()
BankingAccount{double initialBalance)

deposit(double amount)
withdraw(double amount)

double getBalance()

transferdouble amount, BankAccount other)

L1

SavingsAccount CheckingAccount
double interestRate static final int FREE_TRANSACTIONS = 3;
SavingsAccount(double interestRate) static final double TRANSACTION FEE = 1.50;
addinterest() - runs once a month int transactionCount
CheckingAccount()

CheckingAccount{double initialBalance)

deposit(double amount)
withdraw(double amount)

deductFees()
- runs once a month
- if more than FREE_TRANSACTIONS have occurred this month,
the extra onces are charged a fee

Abstract Classes

» Hybrid of superclasses and interfaces
> Like regular superclass:
- Provide implementation of some methods
> Like interfaces
- Just provide signatures and docs of other methods
- Can’t be instantiated
» Example:
- public abstract class BankAccount {
/*%* documentation here */
public abstract void deductFees();

Elided methods as before

Access Modifiers

» Review

> public—any code can see it
- private—only the class itself can see it

» Others N
- default (i.e., no modifier)—only code Bad for
in the same package can see it fields!
- good choice for related classes
- protected—like default, but Fields
subclasses also have access should be
- sometimes useful for helper methods private

Q9

Break:

» Methods can call super.merhodName(...)
- To do the work of the parent class method, plus...
- Additional work for the child class

public class Workaholic extends Worker {
public void doWork () {
super .doWork () ;
drinkCoffee() ;
super .doWork () ;

BallWorlds

- Pair programming
- Project is in your rep
- |Instructions are on cour

under Programs ~ Ball

Your instructor will demo BallWorlds
UML, especially the Ball interfaces

ISCUSS its

BallWorlds Teams - Boutell
n| Team ﬂ

O1 krachtkq,davidsac 1 cheungkt,hugheyjm
02 bugshank,kominet 12 wanstrnj,macshake
03 beaversr,carvers 13 shinnsm,eatonmi
04 popenhjc,lemmers; 14 moravemj,correlbn
05 duganje 15 pedzindm,sheetsjr
06 labarpr,parasby 16 woodhaal,foltztm
07 weavergg,hannumed 17 breenjw

08 runchemr,walthagd

09 smebaksg,amanb

10 mcgeevsa,ngop Check out Ba/lWorlds from SVN

Team number used in repository name:

http://svn.csse.rose-hulman.edu/repos/csse220-201030-ballworlds-teamXX

