
Inheritance

Check out Inheritance from SVN





 You can define a class inside another class

◦ This is called a nested class

◦ It has access to the outer class’ fields and methods

◦ Useful if the inside class is a “helper class” of interest only 
to the outside class

 You can define a class and construct an instance of 
it inside a method

◦ This is called a local  inner class

◦ Useful if the class is small and the object refers to variables 
in the outside class

 You can even make the inside class anonymous.

◦ This is called an anonymous inner class

◦ Let’s do an example

This nomenclature is not universal.  See

http://blogs.sun.com/darcy/entry/nested_inner_member_and_top

for more than you could possibly want to know about this subject
Q1

http://blogs.sun.com/darcy/entry/nested_inner_member_and_top


 LinearLightsOut

 Individual assignment

 Show you internalized what you learned from 
SwingDemo

 Anonymous listeners could help (but not 
required)

 A good practice exam question

 Due Tuesday
◦ I recommend you complete through stage 5 tonight 

so you can ask questions tomorrow.



 Sometimes a new class is a 
special case of the concept 
represented by another 

 Can “borrow” from an 
existing class, changing just 
what we need

 The new class inherits from 
the existing one:
◦ all methods

◦ all instance fields

Q2



 class SavingsAccount extends BankAccount

◦ adds interest earning, keeps other traits

 class Employee extends Person

◦ adds pay info. and methods, keeps other traits

 class Manager extends Employee

◦ adds info. about employees managed, changes pay 
mechanism, keeps other traits



 class SavingsAccount extends BankAccount {

// added fields

// added methods

}

 Say “SavingsAccount is a BankAccount”

 Superclass: BankAccount

 Subclass: SavingsAccount

Q3



The “superest” 
class in Java

Still means 
“is a”

Solid line 
shows 

inheritance

Q4



 class ClickHandler implements MouseListener

◦ ClickHandler promises to implement all the 
methods of MouseListener

 class CheckingAccount extends BankAccount

◦ CheckingAccount inherits (or overrides) all the 
methods of BankAccount

For client code 
reuse

For 
implementation 

code reuse





 Inherit methods unchanged

 Override methods
◦ Declare a new method with same signature to use 

instead of superclass method

◦ The new method can do completely different 
behavior from the overridden method, or it can do 
the overridden behavior plus some new behavior

 Add entirely new methods not in superclass

Q5



 ALWAYS inherit all fields unchanged

 Can add entirely new fields not in superclass

DANGER!  Don’t use 
the same name as a 

superclass field!

Q6



 Calling superclass method:

◦ super.methodName(args);

 Calling superclass constructor:

◦ super(args);

Must be the first 
line of the subclass 

constructor

Q7





 Hybrid of superclasses and interfaces
◦ Like regular superclass:

 Provide implementation of some methods

◦ Like interfaces

 Just provide signatures and docs of other methods

 Can’t be instantiated

 Example:

◦ public abstract class BankAccount {

/** documentation here */

public abstract void deductFees();

…

}

Elided methods as before



 Review
◦ public—any code can see it

◦ private—only the class itself can see it

 Others
◦ default (i.e., no modifier)—only code 

in the same package can see it

 good choice for related classes

◦ protected—like default, but 
subclasses also have access

 sometimes useful for helper methods

Bad for 
fields! 

Fields 
should be 

private

Q9



 Methods can call super.methodName(…)
◦ To do the work of the parent class method, plus…

◦ Additional work for the child class

public class Workaholic extends Worker {

public void doWork() {

super.doWork();

drinkCoffee();

super.doWork();

}

}



BallWorlds
• Pair programming with a new partner

• Project is in your repository

• Instructions are on course web site,
under Programs ~ BallWorlds ~ instructions.htm

• Your instructor will demo BallWorlds and discuss its 
UML, especially the Ball interfaces



n Team

01 krachtkq,davidsac

02 buqshank,kominet

03 beaversr,carvers

04 popenhjc,lemmersj

05 duganje

06 labarpr,parasby

07 weavergg,hannumed

08 runchemr,walthagd

09 smebaksg,amanb

10 mcgeevsa,ngop

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201030-ballworlds-teamXX

n Team

11 cheungkt,hugheyjm

12 wanstrnj,macshake

13 shinnsm,eatonmi

14 moravemj,correlbn

15 pedzindm,sheetsjr

16 woodhaal,foltztm

17 breenjw

Check out BallWorlds from SVN


