CSSE 220 Day 27

Finish the Sorting Intro
Work on Spellchecker Project

CSSE 220 Day 27

- Mini-project is due at the beginning of Day 30 class (no late days), so ready for presentation
- There will be time in class to work with your team every day. Do not miss it!
- Questions?
- Today:
- Finish the Sorting intro
- Work on Spellchecker

Knowledge of Elementary Sorts

- What should you know/be able to do by the end of this course?
- The basic idea of how each sort works
- insertion, selection, bubble, shell, merge
- Can write the code in a few minutes
- insertion, bubble, selection
- perhaps with a minor error or two
- not because you memorized it, but because you understand it
- What are the best case and worst case orderings of N data items? For each of these:
- Number of comparisons
- Number of data movements

Elementary Sort summary

- Insertion sort
- for ($\mathrm{i}=1 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++$)
- place a[i] in its correct position relative to a[0] ...a[i-1]
- move "right" each of those items that is less than a[i].
- Selection sort
- for ($\mathrm{i}=\mathrm{N}-1 ; \mathrm{i}>0 ; \mathrm{i}--$)
- maxPos = location of largest element among a[0] ... a[i]
- a[i] \rightarrow a[maxPos]
- Bubble sort
- for ($\mathbf{i}=0 ; \mathrm{i}<\mathrm{N}-1 ; \mathrm{i}++$)
- for ($\mathrm{j}=0 ; \mathrm{j} \leq \mathrm{i} ; \mathrm{j}++$)
- if (a[j] >a[j+l]) a[j]↔a[j+1]
- Demonstrations:
- http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html
- http://www.geocities.com/siliconvalley/network/1854/Sor t1.html

Analyzing Sorts

- Def: An inversion is any pair of inputs that are out of order:
- [5,8,3,9,6] has 4 inversions: $(5,3),(8,3),(8,6),(9,6)$
- [5,3,8,9,6] has 3 inversions: $(5,3), \quad(8,6),(9,6)$
- Swapping a pair of adjacent elements removes exactly one inversion
- Worst case?
- all $n(n-1) / 2$ pairs are out of order, so $n(n-1) / 2$ swaps.
- Average case?
- Consider any array, a, and its reverse, r. Then
$\operatorname{inv}(\mathrm{a})+\operatorname{inv}(\mathrm{r})=\mathrm{n}(\mathrm{n}-1) / 2$
- So on average, $n(n-1) / 4$ inversions.

Demo

- Conclusion: if few inversions (almost sorted), then few swaps
- Yesterday we looked at a quick demo of selection, bubble, and insertion sorts...
- Completely random data
- Nearly sorted data

How do we beat $\mathrm{O}\left(\mathrm{n}^{2}\right)$?

- If swapping a pair of adjacent elements removes exactly one inversion...
- Would swapping elements that are farther apart remove more inversions?
- ShellSort
- MergeSort

Shell sort

- 1959, Donald Shell
- Based on insertion sort
- http://www.cs.princeton.edu/~rs/shell/animate.html
- Faster because it compares elements with a gap of several positions
- For example, if the gap size is 8 , - Insertion sort elements 0, 8, 16, 24, 32, 40, ...
- Insertion sort elements 1, 9, 17, 25, 33, 41, ...
- ...
- Insertion sort elements 7, 15, 23, 31, 39, 47, ...
- Elements that are far out of order are quickly moved closer to where they are supposed to go.

ShellSort example

ShellSort Code

public static final int[] GAPS $=\{1,4,10,23,57,132,301,701\}$; public static void shellSort(int[] a) \{
for (int gapIndex = GAPS.length - 1; gapIndex >= 0; gapIndex--) \{
int increment = GAPS[gapIndex];
if (increment < a.length)
for (int i = increment; i < a.length; i++) \{
int temp = a[i];
for (int $\mathbf{j}=\mathrm{i}$;
j >= increment \&\& $a[j$ - increment] > temp;
j -= increment) \{
$a[j]=a[j$ - increment];
\}
a[j] = temp;
\}
\}

```
TEST CODE:
public static void main(String[] args) {
    int SIZE = 31;
    int [] nums = new int[SIZE];
    for (int i=0; i<SIZE; i++) {
        nums[i] = (SIZE/2 + 5*i) % SIZE;
    }
    printArray("Before sort", nums);
    shellSort(nums);
    printArray("After sort", nums);
```


Shell sort gap sizes

- Start with a large gap
- Do it again with a smaller gap
- Keep decreasing the gap size
- The last time, the gap must be 1 (why?)
- No gap size should be a multiple of another (except all are multiples of 1)
- If proper gaps are chosen, worst-case performance is $\mathrm{O}\left(\mathrm{N}(\log \mathrm{N})^{2}\right)$
- An example of shellsort analysis (not for the faint of heart):
- http://www.cs.princeton.edu/~rs/shell/paperF.pdf

Merge Sort

- Divide and conquer
- Sort each half, merge halves together
- How to sort each half?
- Use Merge sort
- Running time to merge two sorted arrays whose total length is N :
- O(N)

```
public static void mergeSort( int [ ] a )
{
        int [ ] tmpArray = new int[ a.length ];
        mergeSort( a, tmpArray, 0, a.length - 1 );
}
/**
    * Internal method that makes recursive calls.
    * @param a an array of Comparable items.
    * @param tmpArray an array to place the merged result.
    * @param left the left-most index of the subarray.
    * @param right the right-most index of the subarray.
    */
private static void mergeSort( int [ ] a, int [ ] tmpArray,
                int left, int right )
{
        if( left < right )
        {
        int center = ( left + right ) / 2;
        mergeSort( a, tmpArray, left, center );
        mergeSort( a, tmpArray, center + 1, right );
        merge( a, tmpArray, left, center + 1, right );
    }
}
```


Mergesort Analysis

```
private static void mergeSort(a, left, right ) {
    if( left < right ) {
        int center = ( left + right ) / 2
        mergeSort( a, left, center)
        mergeSort( a, center + 1, right)
        merge( a, left, center + 1, right)
    }
}
```

, Need to answer:

- How deep is the recursion?
- How much work is done in each level of the recursion?

```
/**
    * Internal method that merges two sorted halves of a subarray.
    * @param a an array of Comparable items.
    * @param tmpArray an array to place the merged result.
    * @param leftPos the left-most index of the subarray.
    * @param rightPos the index of the start of the second half.
    * @param rightEnd the right-most index of the subarray.
    */
    private static void merge( int [ ] a, int [ ] tmpArray,
        int leftPos, int rightPos, int rightEnd ) {
        int leftEnd = rightPos - 1;
        int tmpPos = leftPos;
        int numElements = rightEnd - leftPos + 1;
        // Main loop
        while( leftPos <= leftEnd && rightPos <= rightEnd )
        if( a[ leftPos ] <= a[ rightPos ] )
        tmpArray[ tmpPos++ ] = a[ leftPos++ ];
        else
            tmpArray[ tmpPos++ ] = a[ rightPos++ ];
        while( leftPos <= leftEnd ) // Copy rest of first half
        tmpArray[ tmpPos++ ] = a[ leftPos++ ];
        while( rightPos <= rightEnd ) // Copy rest of right half
        tmpArray[ tmpPos++ ] = a[ rightPos++ ];
        // Copy tmpArray back
        for( int i = 0; i < numElements; i++, rightEnd-- )
        a[ rightEnd ] = tmpArray[ rightEnd ];
    }
```


Analysis of merge()

- Merging two sorted arrays of length $\mathrm{O}(\mathrm{n} / 2)$ each is $\sim n$ steps
- Why?
- After each comparison, one element is moved into the sorted array, so there are only n comparisons
- What about merging two sorted arrays of length n/2 each?

Visual analysis

Mergesort Analysis

- For simplicity, assume that N is a power of 2 .
- $\mathrm{N}=$ Time for merging the sorted halves
- $N=(N / 2) * 2=$ time for merging four sorted "quarters" into two sorted "halves"
- $N=(N / 4) * 4$ = time for merging four sorted "eighths" into two sorted "quarters"
- $\mathrm{N}=(2) * \mathrm{~N} / 2$ = time for merging N single elements into $\mathrm{N} / 2$ sorted pairs
- Total $=$

Project time

- Proceed according to your IEP.

