CSSE 220 Day 26

Continue the Sorting intro Work on Spellchecker Project

CSSE 220 Day 26

- Turn in written problems now.
- Thanks to those who have posted links to dictionaries. We will standardize on one soon.
- There will be time in class to work with your team every day. Do not miss it!
- Questions?
- Today:
- Work on Spellchecker
- Continue the Sorting intro

Project presentation/demonstration

- Day 30 in class
- Informal and informational
- What does your program do? How does it do it?
- Data Structures and algorithms.
- Intended audience: Your classmates
- Already know what the project is.
- Already know Java
- Already know the data structures involved.
- No more than 7 minutes, including Q\&A time.
- Since you need to present your final project, it is due at the beginning of your class time on Day 30. No late days may be used for this one.
- I also don't want it to interfere with studying for exams

Project work

- Before you leave today:
- UML Class Diagram
- Iterative enhancement plan
- Commit to your repository
- Finish UML diagram and iterative enhancement plan before midnight tonight.

Homework

- Finish UML Class Diagram and IEP today/tonight
- Markov partner evaluation survey
- Progress on SpellChecker

Sorting Intro

- What do we mean by "sort"?
- What is the best sorting algorithm?
- The three very simple algorithms
- Selection sort
- Bubble Sort
- Why is it so slow?
- Insertion sort
- Inversions and movement
- Faster algorithms

Knowledge of Elementary Sorts

- What should you know/be able to do by the end of this course?
- The basic idea of how each sort works
- insertion, selection, bubble, shell, merge
- Can write the code on paper in a few minutes
- insertion, bubble, selection
- perhaps with a minor error or two
- not because you memorized it, but because you understand it
- What are the best case and worst case orderings of N data items? For each of these:
- Number of comparisons
- Number of data movements

2. Bubble Sort

- Idea: continual swapping
$\mathrm{n}=\mathrm{a}$. length gets results (eventually) - Items "bubble" up
- Each adjacent pair of elements is swapped if they are out of order.
- http://www.cs.ubc.ca/~harriso n/Java/sorting-demo.html
- http://www.geocities.com/silic onvalley/network/1854/Sort1. html

4	5	2	7	8	9

After outer loop repeats 3 times
(12 comparisons and 21 assignments)

2. Bubble Sort 12345

- What's the runtime?
$\mathrm{n}=\mathrm{a}$.length
- Worst? $f\left(n^{2}\right)$ c-ps, swaps for ($i=n-1$; $\left.i>0 ; i--\right)\{$
- Best? $\theta(n)$ cops, 0 swapped $=$ false
- Average?
- Extra space?

$$
\theta(1)
$$

- Runtime measured in:
- number of comparisons
- number of swaps

O, $\forall(1)$ for $(j=0 ; j<=i ; j++)\{$
if (a[j] > $a[j+1])\{$ swap(a, j, j+1) swapped = true

```
    }
& if (!swapped) return;
    }
```

- Note the one redeeming feature of bubble sort

Back to selection sort

- Quiz question asks for the worst-case number of comparisons and swaps
- How does this differ from bubble

```
n = a.length
for(i = 0; i < n-1; i++) {
    minPos = 0
    // find the smallest
    40r) (j=i+1; j<n; j++){
        if (a[j]<a[minPos]){
                minPos = j
        }
    // move it to the start
    swap(a, i, minPos)
``` sort?

\section*{Interlude: A 5-year old's understanding of swapping \\ - Courtesy of my son Caleb...}

\section*{3. Insertion Sort}

- for \((\mathrm{i}=1 ; \mathrm{i}<\mathrm{N} ; \mathrm{i}++\))
- place a[i] in its correct position relative to \(\mathrm{a}[0] \ldots \mathrm{a}[\mathrm{i}-1]\)
- to do this, we need to move "right" each of those items that is larger than a[i].
- Write code together now.
\begin{tabular}{|l|l|l|l|l|l|}
\hline 4 & 5 & 7 & 8 & 9 & 2 \\
\hline
\end{tabular}

\section*{3. Insertion Sort}
- What is the runtime? for (\(\mathrm{i}=1\); \(\mathrm{i}<\mathrm{a}\).length; \(\mathrm{i}++\)) \{
- Best? (n) O J(1) "Sumps" temp = ali];
- Worst? \(\theta\left(n^{2}\right)\) ops, stomps \(j=i\);
- Average? \(\partial\left(n^{2}\right) \quad \theta\left(n^{2}\right)\) while (\(j>0\) \&\& temp<a[j-1])
- Extra space?
- Runtime measured in:
\[
a[j]=a[j-1] ;
\]
j--;
a[j] = temp;
- number of comparisons
- number of swaps

\section*{Experimental Analysis}
- Demo
- Use the results to confirm your answers to quiz \#2-4```

