CSSE 220 Day 25

Exam Retrospective
Sorting intro
Work on Spellchecker Project
CSSE 220 Day 25

- If HW25 written done early, can submit now, or under my door before 8:05 tomorrow

- Questions?
- Today:
 - Exam retrospective
 - Sorting intro
 - Meet your Spellcheck partners and get organized; start your design
Exam results

<table>
<thead>
<tr>
<th>Score</th>
<th>Number of students</th>
<th>Score</th>
<th>Number of students</th>
<th>Score</th>
<th>Number of students</th>
</tr>
</thead>
<tbody>
<tr>
<td>51+</td>
<td>12</td>
<td>45-50</td>
<td>4</td>
<td>90-100</td>
<td>12</td>
</tr>
<tr>
<td>45-50</td>
<td>1</td>
<td>40-44</td>
<td>9</td>
<td>80-89</td>
<td>1</td>
</tr>
<tr>
<td>40-44</td>
<td>1</td>
<td>35-39</td>
<td>4</td>
<td>70-79</td>
<td>2</td>
</tr>
<tr>
<td>35-39</td>
<td>1</td>
<td>30-34</td>
<td>4</td>
<td>60-69</td>
<td>5</td>
</tr>
<tr>
<td>30-34</td>
<td>2</td>
<td>25-29</td>
<td>4</td>
<td>50-59</td>
<td>2</td>
</tr>
<tr>
<td>25-29</td>
<td>2</td>
<td><25</td>
<td>1</td>
<td><49</td>
<td>6</td>
</tr>
<tr>
<td><25</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The grades were bi-modal, so I will likely lower the percentage required for the lower grades in the gradebook's grading scale.
Course grades at this point

<table>
<thead>
<tr>
<th>Grade</th>
<th>Number of students</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
</tr>
<tr>
<td>B+</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
</tr>
<tr>
<td>C+</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>D+</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>
Written exam problems

- I will go through each problem quickly.
 - If you need more explanation of any of them, please ask questions.
 - Some of these are likely to reappear on final exam

- Then quick review of programming problems
 - Another data structs one is likely to appear on exam.
Sorting Intro

- What do we mean by "sort"?
- What is the best sorting algorithm?
- The three very simple Algorithms
 - Bubble Sort
 - Why is it so slow?
 - Insertion sort
 - Selection sort
- Inversions and movement
- Faster algorithms
Elementary Sorting Methods

- Selection sort
- Bubble sort
- Insertion sort
- Merge sort
- Quicksort
- Heapsort
- Radix sort
- Shellsort
- Binary tree sort
- And lots of others (see Wikipedia)

Goals:
1. How does each work?
2. Best, worst, average time?
3. Extra space requirements?
Intro: Swapping

- Recall that calling swap(a[i], a[j]) on

  ```
  swap(int x, int y) {
      int temp = x;
      x = y;
      y = temp;
  }
  ```

 doesn’t work! (Why?)

- Instead call swap(a, i, j) on

  ```
  swap(int[] a, int i, int j) {
      int temp = a[i];
      a[i] = a[j];
      a[j] = temp;
  }
  ```

 Extra space?
1. Selection Sort

- **Idea:** Select smallest, then second smallest, ...


```java
// set length
n = a.length
for (i = 0; i < n-1; i++) {
    minPos = 0  // find the smallest
    for (j=i+1; j < n; j++)
        if (a[j]<a[minPos]) {
            minPos = j
        }
    // move it to the start
    swap(a, i, minPos)
}
```
1. Selection Sort

```java
n = a.length
for (i = 0; i < n-1; i++) {
    minPos = 0
    // find the smallest
    for (j=i+1; j < n; j++){
        if (a[j]<a[minPos]){
            minPos = j
        }
    // move it to the start
    swap(a, i, minPos)
}
After outer loop repeats 3 times:
9 comparisons, but only 3 swaps (9 assignments)
```
1. Selection Sort

- What's the runtime?
 - Best?
 - Worst?
 - Average?

- Extra space?

```java
int n = a.length;
for (int i = 0; i < n-1; i++) {
    int minPos = 0;
    // find the smallest
    for (int j = i+1; j < n; j++) {
        if (a[j] < a[minPos]) {
            minPos = j;
        }
    }
    // move it to the start
    swap(a, i, minPos);
}
```

- $\Theta(n^2)$
- $\Omega(n^2)$
- $\Theta(n^2)$

- $\left(\frac{n-1)(n)}{2}\right)\Theta(n^2)$
- $\Theta(1)$
Other projects have been highly-specified. For this one, you have a lot of leeway and can be very creative.

GUI-based program

Check the words of a text file for spelling
 ◦ User can browse to file

Flag words that are not in program's dictionary

Suggest possible alternate spellings
 ◦ Think of ways misspelling can occur:
 • missing or added letters
 • transposed letters
 • no space between words
 • things you come up with

An interface that allows user to correct the spelling.
 ◦ change, ignore, ignore all, …
SpellChecker and Suggester

- Some GUI things you'll want to learn how to do
 - Browse to a file and open it
 - Deal with text in a text box
 - Display a list of choices and get user selection

- Some things to do if you didn't do them already.
 - Look for a dictionary to use (share it!)
 - Look at user interfaces of some spell-checkers
 - Look up various Java classes that may be useful
 - Especially helpful: The Java Swing book from Safari Tech Books online (see course syllabus)
Mini-project timetable

- Now. Look for a dictionary, think about the kinds of spelling errors you want to detect/correct.
- Day 25. Begin working with your partners.
- Day 27. Demonstrate some progress in class.
- Day 30. Final submission of the project is due.
Spell–checker teams

Repository

csse220-200830-spell001 Members: kleinjt, wanstrjm, harriska

csse220-200830-spell002 Members: drososmj, decluecm, schulte

csse220-200830-spell003 Members: baekj, strayeta, stoverre

csse220-200830-spell004 Members: stanlead, swansom1, carlsojs

csse220-200830-spell005 Members: brousapg, wisejl, hollanbm

csse220-200830-spell006 Members: cobbba, huntdz, segolp

csse220-200830-spell007 Members: chaddhd, cranemd, kotsybja, warnerbc

csse220-200830-spell008 Members: watersbt, robertic, chelmirs

csse220-200830-spell009 Members: borcheb1, ksiazecg, mathisjp