
Exam Review
Hardy Efficiency

Doubly-linked lists

Reminder: Exam #2 is this Friday
◦ Can start 7:15 am
◦ One piece of paper with handwritten notes for the

first part.
◦ Same resources as last time for programming part.
Markov Milestone 2 due Saturday 5 PM
Begin thinking about Spell-check program
Please do the Mini-project partner surveys this
morning if you haven’t yet

Answers to your questions in preparation for
the exam
A look at some Hardy solutions
and empirical analysis.
More on Linked Lists

Abstract Data Types and Data Structures
Collections and Lists
Markov
Exam
Material you have read
Anything else

total = a3 + b3.
One way to move through a and b loops:

total = a3 + b3.
One way to move through a and b loops:

total = a3 + b3.
One way to move through a and b loops:

total = a3 + b3.
One way to move through a and b loops:

total = a3 + b3.
One way to move through a and b loops:

total = a3 + b3.
One way to move through a and b loops:

total = a3 + b3.
One way to move through a and b loops:

Go through the values of a and b in the order
just described
When we calculate each total
◦ Look in table if we have seen that total before
◦ If not, record its triple: (a, b, total) in table.
◦ If so, record in the duplicates table
When we get N items in the duplicates table
◦ They may not be the N smallest. Sort them
◦ See if we can find any others with sums smaller than

the max of those N.
If, so, they will all have a b that is less than the cube root
of this max. Find all of those and add to duplicates table.

Sort again and pick out the Nth one.

Look at them together
Ask questions about anything you don't
understand.
I'll ask you questions.
We'll show some timing computations.
Then see how much of a speed-up we get by
using a faster data structure

An inside joke

1. public Iterator<T> iterator() {
2. return new LinkedListIterator();
3. }
4.

5. class LinkedListIterator implements
Iterator<T> {

6.

7. private ListNode<T> current,
previous;

8.

9. private LinkedListIterator() {
10. current = header;
11. }
12.

13. public boolean hasNext() {
14. return current.next !=null;
15. }
16.

17.

1. public T next() {
2. T val = (current.next.element);
3. previous = current;
4. current = current.next;
5. return val;
6. }
7.

8. public void remove() {
9. if (previous == null)
10. throw new

NoSuchElementException("You can only
call an iterator's remove method after a
call to next()");

11. previous.next = current.next;
12. current = previous;
13. previous = null;
14. }
15. }

Each node has two pointers, prev and next.
There is one other new node, tail, whose prev
pointer points to the node containing the last
element of the list.
This makes remove() easier to write
◦ and it also makes an efficient ListIterator possible.

Work on LinkedLists
Work on Markov justification

