
Java Collections Framework
LinkedList Implementation

Work on Markov

Reminder: Exam #2 is (next) Friday, May 2.
In order to reduce time pressure, you
optionally may take the non-programming part
7:15-8:00 AM.
Markov repositories:
◦ http://svn.cs.rose-hulman.edu/repos/220-200820-markovXXX

Questions?
Today:
◦ Java Collections
◦ Iterators
◦ Begin implementing lists

Structure find insert/remove Comments
Array O(1) can't do it Constant-time access by position
Stack top only

O(1)
top only O(1) Easy to implement as an array.

Queue front only
O(1)

O(1) insert rear, remove front.

ArrayList O(1) O(N) Constant-time access by position;
O(log n) time to find arbitrary element
if array is sorted

Linked List O(n) O(1) O(N) to find insertion position,
iterators (today) help.

HashSet/Map O(1) O(1) If table not too full
TreeSet/Map O(log N) O(log N) Kept in sorted order
MultiSet O(log N) O(log N) keep track of multiplicities
PriorityQueue min only

O(1)
O(log N) Can only find/remove smallest

Tree O(log N) O(log N) If tree is balanced
Graph O(N*M) ? O(M)? N nodes, M edges
Network shortest path, maxFlow

http://www.falkhausen.com/en/diagram/html/java.util.Collection.html

Java Collections

Handy Refs: Java Collections
Framework documentation

Introductory page:
◦ http://java.sun.com/j2se/1.5.0/docs/guide/collections/

index.html
Outline of the classes:
◦ http://java.sun.com/j2se/1.5.0/docs/guide/collections/

reference.html
What’s new in JDK 1.5 and 1.6:
◦ http://java.sun.com/j2se/1.5.0/docs/guide/collections/

changes5.html
◦ http://java.sun.com/developer/technicalArticles/J2SE/D

esktop/javase6/beta2.html

The main Java tool for specifying an ADT is …
◦ … an interface
◦ Major example: The java.util.Collection interface.
Some important methods from this interface:

Factory method

Iterators
Consider a loop to fund the sum of each
element in an array:

for (int i = 0; i < ar.length; i++) {
sum += ar[i];

}

We want to generalize this beyond
arrays

What's an iterator?
More specifically, what is a java.util.Iterator?
◦ It's an interface:
◦ interface java.util.Iterator<E>
◦ with the following methods:

We create a new concrete instance of an iterator, but use
an interface return type (using polymorphism). This is
what a factory method does.
The advantage is that if we change the type of collection
used in main(), then we don’t have to change the iterator
type.

Example: Using an Iterator
ag is a Collection object.

Using Java 1.5’s “foreach” construct:

Note that the Java compiler essentially translates the latter code into the former.

What's an iterator?
More specifically, what is a java.util.Iterator?
◦ It's an interface:
◦ interface java.util.Iterator<E>
◦ with the following methods:

Why do iterators have their own remove method, separate
from the Collections’ remove?

An extension, ListIterator, adds:

Sort and Binary Search
The java.util.Arrays class provides static methods
for sorting and doing binary search on arrays.
Examples:

ag can be any Collection of Integers

In Java 1.5 we can simplify it even more.

Note that the Java compiler translates the latter code into the former.

addAll – add all of the elements from another
collection to this one
containsAll – does this collection contain all of
the elements of the other collection?
removeAll – removes all of this collections
elements that are also contained in the other
collection
retainAll - removes all of this collections
elements that are not contained in the other
collection
toArray – returns an array that contains the same
elements as this collection.

The java.util.Arrays class provides static methods for
sorting and doing binary search on arrays. Examples:

The java.util.Collections
class provides similar static methods
for sorting and doing binary search on
Collections. Specifically Lists.
Look up the details in the
documentation.

In weiss.util, the author shows "bare bones"
possible implementations of some of the
classes in java.util.
He picks the methods that illustrate the
essence of what is involved in the
implementation, for educational purposes.
Some other Data Structures classes are in
weiss.nonstandard.

In weiss.nonstandard, the author shows
implementations of some common data
structures that are not part of the java.util
package, and he also shows alternate
approaches to implementing some classes
(like Stack and LinkedList) that are in
java.util.

If you followed the directions in assignment
1, both of these packages should be
accessible to your code.
◦ import weiss.nonstandard.*;
Documentation is available, and you can copy
it to your computer.

It’s time to look at an implementation.

A List is an ordered collection, items accessible by
position. Here, ordered does not mean sorted.
interface java.util.List<E>
User may insert a new item at a specific position.
Some important List methods:

Store items contiguously in a "growable" array.

Looking up an item by index takes constant time.

Insertion or removal of an object takes linear time
in the worst case and on the average (why?).

If Comparable list items are kept in sorted order in
the ArrayList, finding an item takes log N time
(how?).

Let’s sketch some of the implementation together.
◦ Fields, constructor for empty list.

