
Abstract Data Types
Some Low-Level Implementations

In Angel: Lessons > Project Forms > Paint
Evaluation > Paint
◦ Please finish paint partner review survey (on ANGEL)

asap.
◦ Have fun evaluating each other’s Paint programs

Friday, 5 pm if possible
I’ve looked at all of them and deeply at 4.

Be working on Hardy's Taxi.
Find a partner for Markov (different than your
Paint partner)
◦ Survey in class tomorrow

Questions?
Today: BinaryInteger exercise, more data
structures.

ADT for non-negative integers
How to represent? Let’s look at 2 choices:
◦ Unary strings, e.g., 7 = “111111”

ZERO:
succ:
pred:

◦ Binary strings, e.g., 6 = “011”
ZERO:
succ (addOne):

Let’s write some tests and develop an algorithm
plus:

Tests?

Work on the BinaryInteger exercise (linked
from the Schedule page)
Work with a partner
If you finish early, work on Hardy's Taxi

What is data? (bits!)
What is a Data Type
◦ An interpretation of the bits

basically a set of operations

Abstract Data Type example: non-negative integer
◦ ZERO, succ, pred, isZero (derived methods plus, mult).
◦ 1st representation: unary strings

ZERO is "", succ(zero) is "1", succ(succ(zero)) is "11"
We wrote succ() and pred()

◦ 2nd rep: binary strings (least-significant bit first)
ZERO is "0", succ(zero) is "1", succ(succ(zero)) is "01"
We wrote succ()

Most of the time when we talk about a data structure, we
mean an ADT for storing several items (usually all of the
items have the same type).
When studying a new data structure, consider three
aspects:
◦ Specification (interface for the operations)
◦ Implementation (sometimes several alternate

implementations)
◦ Application (how can it be used?)
Mostly, these can be considered independently.
◦ If we understand the interface and trust the person who says

she implemented it, we can feel free to apply it without having
to understand the details of the implementation.

220 emphasizes specification and application.
230 emphasizes specification and implementation.

The dedication from Data Structures and the
Java Collections Framework by William Collins
(first edition):
◦ To Karen, my wife of 35 years, for giving me 20 of

the happiest years of my life.
Go figure!

An array.
Size must be
declared when the
array is
constructed
We can look up or
store items by
index
a[i+1] = a[i] + 2;

Implementation (usually
handled by the compiler):
Suppose we have an array of
N items, each b bytes in size

Let L be the address of the
beginning of the array

What is involved in finding
the address of a[i]?

What is the Big-oh time
required for an array-element
lookup? What about lookup
in a 2D array of M rows with
N items in each row?

What about lookup in a 3D
array (M x N x P)?

a[0]

a[1]

a[2]

a[i]

a[N-2]

a[N-1]

La

Array (1D, 2D, …)
StackWhat is "special" about

each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

Last-in-first-out (LIFO)
Only top element is accessible
Operations: push, pop, top, topAndPop
◦ All constant-time.
Easy to implement as a (growable) array
with the last filled position in the array
being the top of the stack.
Applications:
◦ Match parentheses and braces in an expression
◦ Keep track of pending function calls with their

arguments and local variables.
◦ Depth-first search of a tree or graph.

Array (1D, 2D, …)
Stack
Queue

What is "special" about
each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

First-in-first-out (FIFO)
Only oldest element in the queue is
accessible
Operations: enqueue, dequeue
◦ All constant-time.
Can mplement as a (growable) "circular"
array
◦ http://maven.smith.edu/~streinu/Teaching/Cou

rses/112/Applets/Queue/myApplet.html
Applications:
◦ Simulations of real-world situations
◦ Managing jobs for a printer
◦ Managing processes in an operating system
◦ Breadth-first search of a graph
You’ll implement a fixed-length queue
next week

Array (1D, 2D, …)
Stack
Queue
List
◦ ArrayList
◦ LinkedList
Set
MultiSet
Map (a.k.a. table, dictionary)
◦ HashMap
◦ TreeMap
PriorityQueue
Tree
Graph
Network

What is "special" about
each data type?
What is each used for?
What can you say about
time required for
- adding an element?
- removing an element?
- finding an element?

You should be able to answer all of
these by the end of this course.

