CSSE 220 Day 15

Key Concepts Quiz
Recap of Function Objects and BigOh Work on Paint

CSSE 220 Day 15

- Note that Paint is due next class. Are you almost done?
- Student assistants are available in the lab this afternoon Sunday evening, Monday afternoon, and Monday evening.
- Exams:
- Exam 2 is Friday, May 2, as originally announced in the syllabus
- Final is Monday, May 19, at 6 PM.
- Today:
- Key Concepts Quiz
- Recap of big-Oh and function objects
- Paint time

Questions?

Quiz

- Angel $>$ Lessons $>$ Assignments $>$ Reading Quizzes > Key Concepts quiz

Recap: Efficiency

for (int $\mathbf{i}=0 ; \mathbf{i}<\mathrm{n} ; \mathbf{i}++$) \{

$$
a=3 * i
$$

\}
$b=17$

- How many assignments are made?

Recap: Efficiency

$$
\text { for (int } \mathbf{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++ \text {) }\{
$$ do something \} do something else

- Key: we know that whatever happens in the loop happens n times. Unless the "something" depends on i (like StringCopy), then the runtime is
- Note: we just care what happens when n gets large.

Recap: big-Oh

- We say that $5 n^{2}+4 n+3$ is $O\left(__\right.$_ $)$
- What does this mean?
- Is $5 n^{2}+4 n+3 O\left(n^{3}\right)$?
- Is $5 n^{2}+4 n+3 O(n) ?$
- We introduce new notation to discriminate further.

Recap: $0, \Omega, \Theta$

- $f(N)$ is $O(g(N)$ if there is a constant c such that for sufficiently large $N, f(N) \leq c g(N)$
- Informally, the growth rate of f is bounded above by the growth rate of g
- $f(N)$ is $\Omega(g(N)$ if there is a constant c such that for sufficiently large $N, f(N) \geq c g(N)$
- Informally, the growth rate of f is bounded below by the growth rate of g
- $f(N)$ is $\Theta(g(N)$ if $f(N)$ is $O(g(n))$ and $f(N)$ is $\Omega(\mathrm{g}(\mathrm{N}))$
- Informally, the growth rate of f is the same as the growth rate of g

Big-Oh Style

- Give tightest bound you can

- Saying that $3 \mathrm{~N}+2$ is $\mathrm{O}\left(\mathrm{N}^{3}\right)$ is true, but not as useful as saying it's $\mathrm{O}(\mathrm{N}) \quad$ [What about $\Theta\left(\mathrm{N}^{3}\right)$?]
- Simplify:
- You could say:
- $3 n+2$ is $\mathrm{O}(5 n-3 \log (n)+17)$
- and it would be technically correct...
- It would also be poor taste ... and put me in a bad mood.
- But... if I ask "true or false: $3 n+2$ is $O\left(n^{3}\right)$ ", what's the answer?
- True!
- There may be "trick" questions like this on assignments and exams.
- But they aren't really tricks, just following the big-Oh definition!

Function objects review

- Go over solution to EqualsZero and EqualsK.
- Note how beautiful countMatches() is.

A "map" functor

- In this assignment, you'll write a functor to do an operation to each element in an array, and return an array containing the results.
- Examples:
\circ int[] ar $=[6,7,8,9]$
- When map is called with ar and a Square functor, it would return [36, 49, 64, 81]
- When map is called with ar and an isPrime functor, it would return [false, true, false, false]

Work on Paint

- Don't forget to commit your progress report to the repository before the end of class.

