CSSE 220 Day 14

More algorithm efficiency analysis, Big-Oh Work on Paint

CSSE 220 Day 14

- BallWorlds grades are on ANGEL, and scoring sheets handed back.
- Another progress Report/IEP due today at the end of class.
- Today:
 - Algorithm analysis and Big-Oh
 - More Paint time
- Questions?

Questions on Angel part of exam?

- Or on programming part?
- This is all fair game for the Final Exam, only 6 short weeks away (Monday, 6pm in Crapo G310).

Key Concepts quiz tomorrow

- It is important that we not only be able to write object-oriented programs, but that we build a vocabulary that enables us to communicate with each other about them.
- That is why we asked you to spend four weeks learning the "lingo" of OOP in Java.
- Tomorrow is the check-up on that.
- This ANGEL-based quiz is closed book and notes.
- It consists of matching questions, and you will only have about 30 seconds per term to complete it. So know your terms well!

Measuring program effciency

- What kinds of things should we measure?
 - 1. CPU time
 - 2. memory used
 - 3. disk transfers
 - 4. network bandwidth
- Mostly in this course, we focus on the first two, and especially on CPU time.

Some simple efficiency tips

- If a statement in a loop calculates the same value each time through, move it outside the loop
- Store and retain data on a "need to know" basis.
- Don't store what you won't reuse!
 - Do store what you need to reuse!
- Don't put everything into an array when you only need one or two consecutive items at a time.
- Don't make a variable be a field when it can be a local variable of a method.

An example of running time

- How can we measure running time?
- System.currentTimeMillis
- Run Sieve example.
- When do we really care about efficiency?
- Can we get a rough idea of efficiency by analyzing algorithms on paper?

Familiar example: Linear search of a sorted array of Comparable items

```
for (int i=0; i < a.length; i++)
if ( a[i].compareTo(soughtItem) > 0 )
   return NOT_FOUND;
else if ( a[i].compareTo(soughtItem) == 0 )
   return i;
return NOT_FOUND;
```

•What should we count?

•Best case, worst case, average case?

Another algorithm analysis example

Does the following method actually create and return a copy of the string s?

What can we say about the running time of the method? (where N is the length of the string s) What should we count?

```
public static String stringCopy(String s) {
   String result = "";
   for (int i=0; i<s.length(); i++)
      result += s.charAt(i);
   return result;</pre>
```

Don't be too quick to make assumptions when analyzing an algorithm!

How can we do the copy more efficiently?

Figure 5.3

Functions in order of increasing growth rate

Function	Name
с	Constant
$\log N$	Logarithmic
$\log^2 N$	Log-squared
Ν	Linear
$N \log N$	N log N (a.k.a "log linear"
N ²	Quadratic
N ³	Cubic
2N	Exponential

Asymptotic analysis

- We only really care what happens when N (the size of a problem) gets large.
- Is the function linear? quadratic? etc.

- Simple Rule: Drop lower order terms and constant factors.
 - 7*n* 3 is **O**(*n*)
 - $8n^2\log n + 5n^2 + n$ is $O(n^2\log n)$
- Special classes of algorithms:
 - logarithmic:
 - linear
 - quadratic
 - polynomial
 - exponential

$$O(n)$$

 $O(n^2)$
 $O(n^k), k \ge 1$
 $O(a^n), n \ge 1$

 $O(\log n)$

- "Relatives" of the Big-Oh
 - $\Omega(\mathbf{f}(n))$: Big Omega
 - $-\Theta(\mathbf{f}(n))$: Big Theta

Limits and asymptotics

consider the limit

$$\lim_{n \to \infty} \frac{f(n)}{g(n)}$$

- What does it say about asymptotics if this limit is zero, nonzero, infinite?
- We could say that knowing the limit is a sufficient but not necessary condition for recognizing big-oh relationships.
- It will be sufficient for all examples in this course.

Apply this limit property to the following pairs of functions

Assume a and b are constants. N and N^2 $N^{2} + 3N + 2$ and N^{2} N + sin(N) and Nlog N and N N log N and N^2 N^a and Nⁿ a^{N} and b^{N} (a < b) $\log_a N$ and $\log_b N$ (a < b) N! and N^{N}

Big-Oh Style

Give tightest bound you can

Saying that 3N+2 is O(N³) is true, but not as useful as saying it's O(N) [What about Θ(N³) ?]

Simplify:

- You *could* say:
- 3n+2 is O(5n-3log(n) + 17)
- and it would be technically correct...
- It would also be poor taste ... and put me in a bad mood.

But... if I ask "true or false: 3n+2 is O(n³)", what's the answer?

- True!
- There may be "trick" questions like this on assignments and exams.
- But they aren't really tricks, just following the big-Oh definition!

Rest of Class

- Please provide me with some mid-term feedback on how the course is going
 - Angel > Lessons > Course Discussion Forums > Midterm Plus/Delta Feedback
- Thanks!
- After that you have all class to work on Paint with your partner.
- Please commit your updated IEP at the end of class.