
Generic types
Paint design

Please sit with your Paint project partner

Solutions to HW6 written problems and DotsUML should
be in the usual place on ANGEL:

Lessons > Assignments > Solutions

Today:
◦ Statics revisited
◦ Compositing
◦ Generic types in Java.
◦ Meet your Paint partner, finish your UML diagram

and work on your IEP, both due Friday. 5pm.

Questions on BallWorlds? Exam?

Please answer quiz questions 1 and 2

Demo

Do Quiz questions 3 and 4

In Python we could simply write
return x, y
In C, we could pass pointers to variables and
change what they pointed to.
What can we do in Java?
This is a simple example of what is called the
Composite Pattern.
The returned value is a composition of two or
more values that may be unrelated other than
by the need to be returned from a function

We really want our algorithms to operate on
any type of data, without having to re-write
the whole method.

In Java, we can do this two ways:
◦ Use inheritance (pre-Java 1.5, a bit clunky)
◦ Use Generics (newer, nicer)

ArrayList list = new ArrayList();
list.add(new Integer(3)); // 3 needs to be boxed
list.add("hello");
Integer temp = (Integer)list.get(0); //casting
int num = temp.intValue(); // unboxing
//int num = list.get(0); // I wish this worked!

Problems?
Casting, boxing and unboxing are a pain in the neck!
We have no control over the type of what goes in! (which
means we should check for compatibility using instanceof
to avoid ClassCastExceptions)

ArrayList list = new ArrayList();
list.add(3); //auto-boxed to an Integer
list.add("hello");
int num = (Integer)list.get(0); // auto-unboxed
int num2 = (Integer)list.get(1) // Class-cast exception!
//int num = list.get(0); // still doesn’t work

Problems?
Casting is still a pain in the neck!

At least auto-boxing relieves some of the pain!

We still have no control over the type of what goes in!

ArrayList<Integer> list = new ArrayList<Integer>();
list.add(3);
//list.add("hello"); // now a compile-time error
int num = list.get(0); // I’m happy this works!

Problems?
Casting? Not needed!
Mixed types? Caught at compile time!

To use generics, use the type in a parameter.
Example showing:
◦ The use of a type in a class
◦ Various places where the type parameter can be used:

public class SomeClass<E> {
public E someMethod(E param) {

E retValue = 2 * param;
return retValue;

}
…

}

Unfortunately, this example doesn’t work, since we can’t
multiply 2 by an unknown, possibly non-numeric type.

Do LeechHome quiz question

What if I have a method that operates on an ArrayList
of Vehicles, but I want to pass an ArrayList of Trucks?
Intuitively, this should work, but Java doesn’t allow it,
since it couldn’t catch errors until runtime.
Solution? In the method declaration, use type bounds
with wildcards:
public void
processVehicle(ArrayList<? extends Vehicle> list) {
◦ for (Vehicle v : list) { … }
}

At compile time, the generics are replaced
with the types used
If there are bounds, it uses them and inserts
the proper casts

Can’t use primitives as types
◦ No int, need to use Integer
Can’t instantiate a type: E foo = new E();
◦ What is E? It could even be an abstract class; this

wouldn’t make sense!
Can’t make generic arrays: E[] ar = new E[17];
◦ Naïve solution: use typecasts:

E[] ar = (E[])(new Object[17])
This gives a compiler warning

◦ Better solution: use ArrayList<E>

Check out the demo.

Any class that implements Comparable contracts to provide a
compareTo method.

Therefore, we can write generic methods on Comparable
objects. For example, in the Arrays class:

String is a Comparable class.
If it did not already have a compareTo
method, how would you write it?

import java.util.Arrays;

public class StringSort {

public static void main(String[] args) {
String [] toons = {"Mickey", "Minnie", "Donald",

"Pluto", "Goofy"};
Arrays.sort(toons);
for (String s:toons)

System.out.println(s);
}

}

Output:
Donald
Goofy
Mickey
Minnie
Pluto

