
Event Handling via Listeners

 BigRational due now

 Tonight’s HW: quick reading (no quiz), finish
Swing warmup (2 more short, but non-trivial
programs)

 Exam next Friday (28 March); details on
Tuesday

 Questions about Java? Reading? Homework?

Class What it is

JFrame a top-level window

JComponent a region where we can draw; also parent of many other
widget classes

JButton a JComponent representing a button. When clicked, an
action can happen

JLabel a place to put text in a window

JTextfield a place for the user to enter text

JPanel a JComponent that can be used as a container for
organizing other widgets

Graphics an object that can draw things on a JComponent. We
never have to create this object; it is provided to us by
the system

Graphics2D a more "object-oriented" graphics object

JOptionPane Request a single line of input from the user,

 So far we have
◦ Created A JFrame to serve as a top level window.

◦ Added a subclass of JComponent to the JFrame.

◦ Drawn in the component by writing code in the
paintComponent() method.

◦ Used the Graphics2D object passed to
paintComponent by the system.

◦ Gotten that object to draw shapes by using
Graphics2D's draw and fill methods.

◦ Drawn text and modified colors

◦ Constructed colors based on RGB values.

 Look at the Car example.

 So far, we’ve controlled the flow of
our program.

 But modern programs respond to
events
◦ Mouse motion, mouse clicks,

button presses, menu selections,
…

 The Java window manager
generates a huge number of events
◦ Whenever any of these happen

 "Most Programs don't want to be
flooded by boring events"

- Cay Horstmann
◦ We need to listen for specific

events
class Foo implements MouseListener {

…

}

Interface, that is…

 ActionListener

◦ For component-defined actions (such as pressing a button)

 MouseMotionListener

◦ For receiving mouse motion events (movement and dragging) on a
component.

 MouseListener

◦ For clicks and other mouse events (click and double-click, mouse
enters component)

 KeyboardListener

 ChangeListener

◦ For components in which we only care about change (like sliders)

See the API spec. for which methods you need to write

 Implement the BlahListener interface

class Foo implements MouseMotionListener {

…

// We promise to implement these.

void mouseDragged(MouseEvent e) {

System.out.println(“Hey, stop pulling me!”);

}

void mouseMoved(MouseEvent e) {

System.out.println(“The mouse is moving!”);

System.out.println(e.getX() + “ “ + e.getY());

}

}

..\..\My Documents\CSSE120\Program Files\Java\jdk1.5.0_04\docs\api\java\awt\event\MouseMotionListener.html
..\..\My Documents\CSSE120\Program Files\Java\jdk1.5.0_04\docs\api\java\awt\event\MouseEvent.html
..\..\My Documents\CSSE120\Program Files\Java\jdk1.5.0_04\docs\api\java\awt\event\MouseMotionListener.html
..\..\My Documents\CSSE120\Program Files\Java\jdk1.5.0_04\docs\api\java\awt\event\MouseEvent.html

 ButtonTester/ClickListener
◦ About as simple as we can get and still respond to clicks. (from

BigJava)
◦ A separate ActionListener class.

 OneButton
◦ Frame is filled with a button that changes colors when clicked.

 FollowTheMouse
◦ Draw a small circle where the user clicks.

 OneButton2
◦ Make the button smarter …

 ClickCounter
◦ Clicking a button causes the contents of a label to change.
◦ The Frame is the "boss" and the ActionListener.

 Multiplier
◦ Get two numbers from textfields and display their product.

 Need 3 things!
1. Responder implements ActionListener interface

2. This means it implements actionPerformed
method:
public void actionPerformed(ActionEvent e) {

// what happens when button is pressed

}

3. The “listenee” must attach the listener/responder
Say a frame has a button.

this.button.addActionListener(this);

Listens Responds (this is the frame, but could be

a panel or even the button itself)

 Just one of many ways to do this…
◦ Button is the event source
◦ Panel has to respond to the event and therefore must listen for events.

public TopPanel extends JPanel implements ActionListener {
private JButton changeColor;

…
public TopPanel(){

this.changeColor = new JButton(“Click to change color”);
this.changeColor.addActionListener(this); //Add the listener to

the source
this.add(changeColor);

}

public void actionPerformed(ActionEvent e){
//Change the background color of the panel

}
}

