
Strings, Arrays,

Object intro

� Don't forget the Python vs. Java comparison
document in the Resources folder on the
Web.

� Any questions on:
◦ Syllabus

◦ Java

◦ Reading from the textbook

◦ Homework

◦ etc.

� Write appropriate comments:
◦ Javadoc comments for public fields and methods.

◦ Explanations of anything else that is not obvious.

� Give explanatory variable and method names:
◦ Use name completion in Eclipse, Alt-/ to keep typing

cost low and readability high

� Use local variables and static methods (instead of
fields and non-static methods) where appropriate.
◦ “where appropriate” includes any place where you can’t

explicitly justify doing otherwise.

� Use Ctrl-Shift-F in Eclipse to format your code.

� What is the main difference between primitive
types and object types?

� Consider these two code snippets (assume that we
have import java.awt.Point; import java.awt.Point; import java.awt.Point; import java.awt.Point; at the top of the file.

int a = 3, b = 2;

b = a;

a = 4;

System.out.println(a + " " + b);

Point p1 = new Point(4, 5), p3, p4;

p3 = new Point(p1.x, p1.y);

p4 = p1;

System.out.println("p3==p1? " + (p3==p1) + " " +

"p3.equals(p1)? " + p3.equals(p1));

p3.y = 500;

p4.x = 100;

System.out.println(p1 + " " + p3 + " " + p4);

� charcharcharchar is a (primitive) integer type that
represents a single character.

� char c1='a', c2 ='\n', c3='\\', c4=65;

System.out.printf("*%c*%c*%c*%c*%c*\n",

c1, c2, c3, c4, c4+1);

� output from the above:
a

**A*B*

� StringStringStringString is an object type that represents a
sequence of zero or more characters.

� 'a' vs "a". Draw the pictures.

� A Java StringStringStringString object is immutable.

� I.e., once created, you cannot change its
length or the individual characters in the
String.

� String constants are enclosed in double
quotes.

� + is the concatenation operator

� Every class has a toString() method, which
returns a String representation of an object.

String s1 = new String();

System.out.println("*" + s1 + "*");

String s2 = "";

System.out.println("1 ==? " + (s1==s2));

String s3 = "abc";

String s4 = "ab" + "bc".substring(1);

String s5 = "ab".concat("c");

System.out.println("2 ==? " + (s3==s4));

System.out.println("3 ==? " + (s4==s5));

System.out.println("1 equals? " + (s1.equals(s2)));

System.out.println("2 equals? " + (s4.equals(s3)));

System.out.println("3 equals? " + (s4.equals(s5)));

s1 = "AbCdEfG";

System.out.println(s1.length() + " " + s1.charAt(3) + " " +

s1.toLowerCase() + " " + s1.substring(2, 5) + "\n" +

s1.replace("bC", "XYZ") + " " + s1.indexOf('C') + " " +

s1.substring(0,3).equalsIgnoreCase(s3));

Later: look at the
String.format ()String.format ()String.format ()String.format ()
method.

It is like printf()printf()printf()printf(),
but it returnsreturnsreturnsreturns the
formatted string
instead of printing
it.

� printReverse(s)printReverse(s)printReverse(s)printReverse(s) prints the String s in reverse
order.

� reverse(s)reverse(s)reverse(s)reverse(s) returns a String that is the reverse
of s.

� multiply(s, i)multiply(s, i)multiply(s, i)multiply(s, i) returns a String that contains i
copies of s, where i>=0.

Write these methods:Write these methods:Write these methods:Write these methods:

public static void printIntArray(int[] a)public static void printIntArray(int[] a)public static void printIntArray(int[] a)public static void printIntArray(int[] a)

public static void reverseObjArray(Object[] a)public static void reverseObjArray(Object[] a)public static void reverseObjArray(Object[] a)public static void reverseObjArray(Object[] a)

How many objects are created by How many objects are created by How many objects are created by How many objects are created by
the declaration of pts2?the declaration of pts2?the declaration of pts2?the declaration of pts2?

� Practice later: write methods to find the sum of the
elements of a 2D ragged array of intintintints

int[][] table = new int[4][3];

int[][] table2 = {{1, 4}, {2, 3}, {-2, 4}};

int[][] ragged = new int[4][];

ragged[0] = new int[2];

ragged[0][1] = 4;

ragged[1] = new int[1];

ragged[1][0] = 6;

� An array is inherently fixed-length.
� But we can get the effect of a "growable

array":
◦ Have two variables, arr, and size.
◦ initialize arr to be an array of 5 elements
� I choose 5 because that is what Mark Weiss does.

◦ When we want to add a new element at the end:
� if size == arr.length

� call resize to give us an array twice as big.

� Put the new element in arr[size] and increment size.

� Code:
if (size == arr.length)

arr = resize(arr, size, size*2);
arr[size++] = newValue;

Write
resize()resize()resize()resize()

Why *2 instead of +1?
You'll answer that question mathematically on
the first day of 230 (if not sooner)

� Full name: java.util.ArrayListjava.util.ArrayListjava.util.ArrayListjava.util.ArrayList
� Methods include
◦ add(element)
◦ add(index, element)
◦ get(index)
◦ size()
◦ clear()
◦ remove(object)
◦ remove(index)
◦ set(index, element)
◦ toArray()
◦ trimToSize()

