
Course Intro
Instructor Intro

Java Intro, Continued

� The syllabus

� Java

� etc.

� To submit your homework, do Team > Share
◦ Your repository name is
csse220-200830-username

◦ Use your old SVN password.

Note to

assistants: If
you notice

someone using a

laptop for non-

course stuff

during class

discussions,

please give that

person a gentle

reminder.

� You will generally need to use your
laptops during at least a portion of
every class period. Please be sure to
bring your laptop, a power brick, and
a network cable to class.

� You, me, and YouTube

◦ Turn off IM and email software and only
use other software for things directly
related to class

◦ If you choose to use non-class-related
software or websites during class, you
must sit in the next-to-last row.

� Cell Phones
◦ please set ringers to silent or quiet.

� Minimize class disruptions.

� But sometimes there are emergencies.

� Personal needs
◦ If you need to leave class for a drink of water, a trip
to the bathroom, or anything like that, you need not
ask me. Just try to minimize disruptions.

� Please be here and have your computer up
and running by 8:05.

� In the textbook

� In any of my materials.

� Use the Bug Report Forum on ANGEL

� More details in the Syllabus.

� Plagiarism has sometimes been a problem in
courses at this level. I won't look hard for it,
but if I do happen to find it, watch out!

� Of course, copying from the work of previous
terms' students is just as bad as copying from
this term's students.

� If you use someone else's ideas, attribute
them.

� If you use someone else's code, don't submit
it!

� See the syllabus
� Get help in ways that increase understanding
� Don’t get or give help that bypasses learning.
� My usual penalty for plagiarism or cheating.
◦ If the assignment or exam is worth N points, your score
will be –N (not zero)

◦ Why?

� In cases of electronic copying (and perhaps other
cases), the penalty may apply to both giver and
receiver.

� If you are not sure whether a certain kind of
collaboration is appropriate, ask me before you
do it.

� Reinforce and extend OO ideas from 120
◦ Major emphasis on inheritance

◦ GUI programming using Java Swing

� Data Structures
◦ Introduce Algorithm efficiency analysis

◦ Abstract Data Types

◦ Specifying and using standard Data Structures

◦ Implementing simple data structures (lists)

� Recursion

� Simple Sorting and searching

� A few additional Software Engineering concepts

� Larger programming problems, mostly outside of
class.

◦ Exploring the JDK documentation to find the classes and
methods that you need.

◦ Debugging!

◦ Reviewing other students’ code.

� Reading (a lotlotlotlot to read at the beginning; less later).

◦ Thinking about exercises in the textbooks.

◦ Some written exercises, mostly from the textbook.

◦ Small programming assignments in class (some to be
continued for homework).

� Discussing the material with other students.

What will I spend my time doing?What will I spend my time doing?What will I spend my time doing?What will I spend my time doing?

� This course is about participating, doing.
◦ When we are having a class discussion, you may not
always be the one to answer aloud, but try to THINK
the answer before someone else verbalizes!

� Consider Mary and Bob:
◦ Mary is active and engaged
◦ Bob just sits there “absorbing”
◦ Outcomes?

import java.math.BigInteger;

import java.util.Scanner;

public class Factorial_6_Scanner {

public static final int MAX = 25;

public static BigInteger factorial(int n) {

BigInteger prod = BigInteger.ONE;

for (int i=1; i<=n; i++)

prod = prod.multiply(new BigInteger(i +""));

return prod;

}

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.print("Enter a nonnegative integer: ");

int n = scanner.nextInt();

System.out.println(n + "! = " + factorial(n));

}

}

Import the ScannerScannerScannerScanner
class from the java.utiljava.utiljava.utiljava.util
package.

If we do not do the import, we can write
java.util.Scanner sc = new java.util.Scanner(System.in);

So importimportimportimport is a simple convenient shortcut

System.inSystem.inSystem.inSystem.in is Java's
standard input
stream. Note that this
means the variable
called inininin in the SystemSystemSystemSystem
class.

Other Scanner Scanner Scanner Scanner methods
include nextDouble(),
nextLine(), nextBoolean,
hasNextInt().
hasNextline().

import java.math.BigInteger;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.BufferedReader;

// omitted definition of the factorial method

public static void main(String[] args) {

BufferedReader in =

new BufferedReader(

new InputStreamReader(System.in));

String line = "";

System.out.print("Enter a positive integer: ");

try {

line = in.readLine();

} catch (IOException e) {

System.out.println("Could not read input");

}

int n = Integer.parseInt(line);

System.out.println(n + "! = " + factorial(n));

}

}

Think of this as the
"magic incantation" for
getting set up to read
from standard input.

readline() readline() readline() readline() returns the
next line of input as a
String.

Since readline() readline() readline() readline() could
generate an IO Exception,
the try/catch is required.

parseInt() parseInt() parseInt() parseInt() takes a string that represents an integer
and returns the corresponding int value. It is
somewhat similar to Python's int() int() int() int() function.

Using the new Scanner
class is easier than this
approach. But you will
often see the old
approach in other
people's code (including
Mark Weiss' code).

import java.math.BigInteger;

public class Factorial_9_InputErrors {

public static BigInteger factorial(int n) {

if (n < 0)

throw new IllegalArgumentException();

BigInteger prod = BigInteger.ONE;

for (int i = 1; i <= n; i++)

prod = prod.multiply(new BigInteger(i + ""));

return prod;

}

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.print("Enter a nonnegative integer: ");

try {

int n = scanner.nextInt();

System.out.println(n + "! = " + factorial(n));

} catch (InputMismatchException e) {

System.out.println(“Must be an integer");

} catch (IllegalArgumentException e) {

System.out.println(“Cannot be negative");

}

}

}

If any exception
gets thrown by
the code in the trytrytrytry
clause, the catchcatchcatchcatch
clauses are tested
in order to find
the first one that
matches the
actual exception
type.

If none match, the
exception is
thrown back to
whatever method
called this one.

If it is never
caught, the
program crashes.

� Discuss with the person next to you
(for two or three minutes):
◦ First, tell that person something she/he probably does
not know about you.

� What does each of the following mean?
� What can you say about how it is used?

◦ try

◦ catch

◦ finally

◦ throw

◦ throws

◦ Run some code that might throw an exception Run some code that might throw an exception Run some code that might throw an exception Run some code that might throw an exception

◦ if this type of exception is thrown, run the following code if this type of exception is thrown, run the following code if this type of exception is thrown, run the following code if this type of exception is thrown, run the following code …………
(i.e. (i.e. (i.e. (i.e. handlehandlehandlehandle the exception).the exception).the exception).the exception).

◦ Run this code at the end, whether there is an exception or not.Run this code at the end, whether there is an exception or not.Run this code at the end, whether there is an exception or not.Run this code at the end, whether there is an exception or not.

◦ I discovered something I don't know how to handle. I discovered something I don't know how to handle. I discovered something I don't know how to handle. I discovered something I don't know how to handle.

Does anyone who called me know what to do?Does anyone who called me know what to do?Does anyone who called me know what to do?Does anyone who called me know what to do?

◦ This method might throw this kind of checked exception. This method might throw this kind of checked exception. This method might throw this kind of checked exception. This method might throw this kind of checked exception.

If it does, I'm not handling it! If it does, I'm not handling it! If it does, I'm not handling it! If it does, I'm not handling it!

Documentation for the compiler and users!Documentation for the compiler and users!Documentation for the compiler and users!Documentation for the compiler and users!

import java.math.BigInteger;

public class Factorial_10_Recursive {

public static final int MAX = 30;

/* Return the factorial of n */

public static BigInteger factorial(int n) {

if (n < 0)

throw new IllegalArgumentException();

if (n == 0)

return BigInteger.ONE;

return new BigInteger(n+ "").multiply(factorial(n-1));

}

public static void main(String[] args) {

for (int i=0; i <= MAX; i++)

System.out.println(i + "! = " + factorial(i));

}

}

Recursive factorial definition:Recursive factorial definition:Recursive factorial definition:Recursive factorial definition:
n! = 1 if n = 0
n! = (n-1)! n if n>0

Recursive basically means:Recursive basically means:Recursive basically means:Recursive basically means:
The method calls itself.

import java.math.BigInteger;

public class Factorial_11_Caching {

public static final int MAX = 2000;

static int count = 0; // How many values have we cached so far?

static BigInteger[] vals = new BigInteger[MAX+1]; // the cache

static { vals[0] = BigInteger.ONE; } // Static initializer

/* Return the factorial of n */

public static BigInteger factorial(int n) {

if (n < 0 || n > MAX)

throw new IllegalArgumentException();

if (n <= count) // If we have already computed it …

return vals[n];

BigInteger val =

new BigInteger(n+ "").multiply(factorial(n-1));

vals[n] = val; // Cache the computed value before returning it

count = n;

return val;

}

// Code for main()omitted. Same as in previous example.

}

Store previously-computed
values in an array called valsvalsvalsvals

import java.util.*;

import java.io.*;

public class FileIOTest {

/* Copy an input file to an output file, changing all letters to uppercase.

This approach can be used for input processing in almost any program. */

public static void main(String[] args) {

String inputFileName = "sampleFile.txt";

String outputFileName = "upperCasedFile.txt";

try {

Scanner sc = new Scanner(new File(inputFileName));

PrintWriter out = new PrintWriter(new File(outputFileName));

while (sc.hasNextLine()){ // process one line

String line = sc.nextLine();

line = line.toUpperCase();

for (int i= 0; i< line.length(); i++)

// normally we might do something with each character in the line.

out.print(line.charAt(i));

out.println();

}

out.close();

} catch (IOException e) {

e.printStackTrace();

}

}

}

import java.util.Scanner;

import java.io.*;

public class TryFileInputOutput {

public static void main(String[] args) {

String inFileName=null ,outFileName = "outFile.txt";

Scanner fileScanner;

PrintWriter out;

try {
Scanner sc = new Scanner(System.in);
while (true) // until we get a valid file.

try {
System.out.print("Enter input file name: ");
inFileName = sc.nextLine();
fileScanner = new Scanner(new File(inFileName));
break; // we have a valid file, so exit the loop.

} catch(FileNotFoundException e) {
System.out.println("Did not find file " + inFileName + ". Try again!");

}
out = new PrintWriter(new File (outFileName));

while (fileScanner.hasNextLine()){ // process one line

String line = fileScanner.nextLine();

line = line.toUpperCase();

for (int i=0; i<line.length(); i++)

out.print(line.charAt(i)); // process each char on the line

out.println();

}

out.close();

fileScanner.close();

System.out.println("Done!");

} catch (IOException e) {

e.printStackTrace();

}

Essentially the
same as before

Essentially
the same
as before

Keep looping until Keep looping until Keep looping until Keep looping until
user enters the name user enters the name user enters the name user enters the name
of an input file that of an input file that of an input file that of an input file that
we can actually we can actually we can actually we can actually
open.open.open.open.

Copyright © 2006 Pearson
Addison-Wesley. All rights
reserved. 1-29

Copyright © 2006 Pearson
Addison-Wesley. All rights
reserved. 1-30

// Adapted from Java Examples in a NutShell 3rd Ed, by David Flanagan.

// The children's game FizzBuzz.

public class FizzBuzz {

public static void main(String[] args) {

for(int i = 1; i <= 100; i++) { // count from 1 to 100

switch(i % 35) { // What's the remainder mod 35?

case 0: // For multiples of 35... 1 2 3 4

System.out.print("fizzbuzz "); // print "fizzbuzz".

break; // Don't forget this statement!

case 5: case 10: case 15: // If the remainder is any of these

case 20: case 25: case 30: // then the number is a multiple of 5

System.out.print("fizz "); // so print "fizz".

break;

case 7: case 14: case 21: case 28: // For any multiple of 7...

System.out.print("buzz "); // print "buzz".

break;

default: // For any other number...

System.out.print(i + " "); // print the number.

break;

}

if (i%10 == 0) System.out.println();

}

}

}

1 2 3 4 fizz 6 buzz 8 9 fizz

11 12 13 buzz fizz 16 17 18 19 fizz

buzz 22 23 24 fizz 26 27 buzz 29 fizz

31 32 33 34 fizzbuzz 36 37 38 39 fizz

41 buzz 43 44 fizz 46 47 48 buzz fizz

51 52 53 54 fizz buzz 57 58 59 fizz

61 62 buzz 64 fizz 66 67 68 69 fizzbuzz

71 72 73 74 fizz 76 buzz 78 79 fizz

81 82 83 buzz fizz 86 87 88 89 fizz

buzz 92 93 94 fizz 96 97 buzz 99 fizz

� What do you think it is?
◦ Testing parts of your code in isolation before putting
them all together

� Why is it a good thing?
� How do I write good test cases?
◦ Test all types of inputs, including boundary cases.
◦ Practice!

� How easy is it to do it in Eclipse?
◦ Fairly so, with JUnit

� I will often often often often give you unit tests to help you write
correct code.
◦ Here are some to test last night’s homework…
◦ Check out HW1Test from:
http://svn.cs.rosehttp://svn.cs.rosehttp://svn.cs.rosehttp://svn.cs.rose----hulman.edu/repos/csse220hulman.edu/repos/csse220hulman.edu/repos/csse220hulman.edu/repos/csse220----200830200830200830200830----usernameusernameusernameusername

� Write appropriate comments:
◦ Javadoc comments for public fields and methods.

◦ Explanations of anything else that is not obvious.

� Give explanatory variable and method names:
◦ Use name completion in Eclipse, Alt-/ to keep typing
cost low and readability high

� Use local variables and static methods (instead of
fields and non-static methods) where appropriate.
◦ “where appropriate” includes any place where you can’t
explicitly justify doing otherwise.

� Use Ctrl-Shift-F in Eclipse to format your code.

� Go there now

