
Brief Course Intro
Instructor Intro

Java Intro

� Roll Call

� A few administrative details(more next time)

� Java vs. Python and C

� A first Java program (calculate factorials)

� Some factorial variations

� A new operator (? :)

� A look at the homework

AgendaAgendaAgendaAgenda

� We will have them most days.

� Help you interact with the lecture material.

� Answers should be in the PowerPoint slides
and class discussion.

� When I return them, they should be notes for
you.

� A way for you to give me feedback, ask
questions, or let me discover that we need
more class time on a topic.

� Me: Matt Boutell

� If I mispronounce your name, or if you want to
be called by another name than what the
Registrar gave me, please tell me.

� This is only the second time this new version
of the course has been taught!
◦ Borrowed heavily from Claude Anderson’s materials
from Winter term

� I will usually post my PowerPoint slides afterafterafterafter
each class meeting.
◦ If I ever forget, feel free to remind me.

� Let’s go to Angel

And neither is this course.

Ask, evaluate, respond, comment!

Is it better to ask a question
and risk revealing your

ignorance, or to remain silent
and perpetuate your ignorance?

� Even with statements like, “I have no idea
what you were just talking about.”

� We want to be polite, but in this room
learning trumps politeness.

� I do not intend for classroom discussions to
go over your head. Don't let them!

� That’s because we want time to program
now!
◦ Remember, bring questions to class.

◦ Same thing for reading from the textbook.

� Any other pressing questions before we dive
in?

� Some of you know some Java from taking CSSE
120 previous to Fall, 2007.
◦ Most of the Java intro will be review.

◦ But don't go to sleep:
� a few things are likely to be new,

� or be rusty in your mind because it has been a while since
you did Java programming.

� Most of you know some Python and C.
◦ I assume that Java is unknown to you.

◦ We can move fast because of what you do know.

◦ I'll sometimes compare/contrast Java with Python or C.

◦ Folks from the other group should not need that
analogy, but if you wish you can learn a little about
Python and/or C in the process.

� Classes and objects

� Lists (but no special language syntax for
them like Python)

� Standard ways of doing graphics, GUIs.

� A huge library of classes/functions that make
many tasks easier.

� A nicer Eclipse interface than C has.

� Many similar primitive types: int, char, long,
float, double, ….

� Static typing. Types of all variables must be
declared.

� Similar syntax and semantics for ifififif, forforforfor, whilewhilewhilewhile,
breakbreakbreakbreak, continuecontinuecontinuecontinue, function definitions.

� Semicolons required mostly in the same places.

� Execution begins with the main() function.

� Comments: // and /* … */

� Arrays are homogeneous, and size must be
declared at creation.

� See
http://www.rose-hulman.edu/class/csse/resources/Eclipse/eclipse-java-configuration.htm

◦ Create a new workspace

◦ Download preferences

◦ Point to local javadoc

// Author: Claude Anderson. Nov 19, 2007.

public class Factorial_1_FirstJavaProgram {

public static final int MAX = 17;

/* Returns the factorial of n */
public static int factorial (int n) {

int product = 1;
int i;
for (i=2; i<=n; i++) {

product = product * i;
}
return product;

}

public static void main(String[] args) {
for (int i=0; i <= MAX; i++) {

System.out.print(i);
System.out.print("! = ");
System.out.println(factorial(i));

}
}

}

In Java, all variable and
function definitions are
inside class definitions.

Define a constant, MAX

Except for public staticpublic staticpublic staticpublic static,
everything about this
function definition is
identical to C.

Note the function signature for
Java's main() .

We can declare the loop
counter in forforforfor loop header.

println terminates the
output line after printing;
print does not.

System.outSystem.outSystem.outSystem.out is Java's standard
output stream. Note that
this is the variable called outoutoutout
in the SystemSystemSystemSystem class.

System.outSystem.outSystem.outSystem.out is an object from the PrintStreamPrintStreamPrintStreamPrintStream
class. PrintStreamPrintStreamPrintStreamPrintStream has methods called print() print() print() print()
and printlnprintlnprintlnprintln() () () () .

// Author: Claude Anderson. Nov 19, 2007.

public class Factorial_1_FirstJavaProgram {

public static final int MAX = 17;

/* Returns the factorial of n */

public static int factorial (int n) {

int product = 1;

int i;

for (i=2; i<=n; i++) {

product = product * i;

}

return product;

}

public static void main(String[] args) {

for (int i=0; i <= MAX; i++) {

System.out.print(i);

System.out.print("! = ");

System.out.println(factorial(i));

}

}

}

0! = 1

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

6! = 720

7! = 5040

8! = 40320

9! = 362880

10! = 3628800

11! = 39916800

12! = 479001600

13! = 1932053504

14! = 1278945280

15! = 2004310016

16! = 2004189184

17! = -288522240

What happens when iiii gets to 14?

public class Factorial_2_WithLongs {

public static final int MAX = 21;

/* Return the factorial of n */

public static long factorial (int n) {

long product = 1;

for (int i=2; i<=n; i++)

product *= i;

return product;

}

public static void main(String[] args) {

for (int i=0; i <= MAX; i++)

System.out.println(i + "! = " + factorial(i));

}

}

6! = 720

7! = 5040

8! = 40320

9! = 362880

10! = 3628800

11! = 39916800

12! = 479001600

13! = 6227020800

14! = 87178291200

15! = 1307674368000

16! = 20922789888000

17! = 355687428096000

18! = 6402373705728000

19! = 121645100408832000

20! = 2432902008176640000

21! = -4249290049419214848

It still overflows,
but not as quickly.

A Java intintintint is a 32-bit signed integer;
a longlonglonglong is a 64-bit signed integer.

If either operand is a String, + is the

concatenation operator.

If the other argument of + is not a string,
that argument is automatically converted
to a String (unlike in Python, where you
must explicitly call str() to do the
conversion).

staticstaticstaticstatic: Not associated
with any particular object.

import java.math.BigInteger;

public class Factorial_3_BigInteger {

public static final int MAX = 100;

/* Return the factorial of n */

public static BigInteger factorial(int n) {

BigInteger prod = BigInteger.ONE;

for (int i=2; i<=n; i++)

prod = prod.multiply(new BigInteger(i + ""));

return prod;

}

public static void main(String[] args) {

for (int i=0; i <= MAX; i++)

System.out.println(i + "! = " + factorial(i));

}

}

Java's BigIntegerBigIntegerBigIntegerBigInteger is like
Python's longlonglonglong type.
There is no set limit on
how large a BigInteger
can be.
But calculations are less
efficient than with Java's
intintintint or longlonglonglong types.

The BigIntegerBigIntegerBigIntegerBigInteger class is imported from the java.mathjava.mathjava.mathjava.math package.

ONEONEONEONE is the
name of a
BigIntegerBigIntegerBigIntegerBigInteger
constant (that
represents the
integer 1).

newnewnewnew BigInteger(someStringBigInteger(someStringBigInteger(someStringBigInteger(someString))))
calls the BigInteger
constructor that takes a
String argument.

i+ "" is a quick and easy
way to get from a number
to its StringStringStringString representation.

multiply()multiply()multiply()multiply() is a method of
the BigInteger class that
takes a BigInteger object as
its argument, and returns
the product as a new
BigInteger object.

the BigInteger object returned by factorial()factorial()factorial()factorial() can be
automatically convertet to a String because BigInteger
has a toStringtoStringtoStringtoString() () () () method.

final means that the
value of this variable can
never change. So it is
treated as a constant.

import java.math.BigInteger;

public class Factorial_4_Printf {

public static final int MAX = 25;

/* Return the factorial of n */
public static BigInteger factorial(int n) {

BigInteger prod = BigInteger.ONE;
for (int i=1; i<=n; i++)
prod = prod.multiply(

new BigInteger(i + ""));
return prod;

}

public static void main(String[] args) {
for (int i=0; i <= MAX; i++)

System.out.printf("%2d %30s\n", i,

factorial(i));

}
}

0 1

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

11 39916800

12 479001600

13 6227020800

14 87178291200

15 1307674368000

16 20922789888000

17 355687428096000

18 6402373705728000

19 121645100408832000

20 2432902008176640000

21 51090942171709440000

22 1124000727777607680000

23 25852016738884976640000

24 620448401733239439360000

25 15511210043330985984000000

The syntax and semantics of printfprintfprintfprintf
in Java and C are identical for simple
output formats. The format strings
in Java and Python are also the same

import java.math.BigInteger;

public class Factorial_5_CalculateWidth {

public static final int MAX = 25;

public static BigInteger factorial(int n) {

BigInteger prod = BigInteger.ONE;

for (int i=1; i<=n; i++)

prod = prod.multiply(new BigInteger(i +""));

return prod;

}

public static void main(String[] args) {

int len = factorial(MAX).toString().length();

for (int i=0; i <= MAX; i++)

System.out.printf("%2d %" + len + "s\n" ,

i,

factorial(i));

}

}

0 1

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

11 39916800

12 479001600

13 6227020800

14 87178291200

15 1307674368000

16 20922789888000

17 355687428096000

18 6402373705728000

19 121645100408832000

20 2432902008176640000

21 51090942171709440000

22 1124000727777607680000

23 25852016738884976640000

24 620448401733239439360000

25 15511210043330985984000000

import java.math.BigInteger;

import java.util.Scanner;

public class Factorial_6_Scanner {

public static final int MAX = 25;

public static BigInteger factorial(int n) {

BigInteger prod = BigInteger.ONE;

for (int i=1; i<=n; i++)

prod = prod.multiply(new BigInteger(i +""));

return prod;

}

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

System.out.print("Enter a nonnegative integer: ");

int n = sc.nextInt();

System.out.println(n + "! = " + factorial(n));

}

}

Import the ScannerScannerScannerScanner
class from the java.utiljava.utiljava.utiljava.util
package.

If we do not do the import, we can write
java.util.Scanner sc = new java.util.Scanner(System.in);

So importimportimportimport is a simple convenient shortcut

System.inSystem.inSystem.inSystem.in is Java's
standard input
stream. Note that this
means the variable
called inininin in the SystemSystemSystemSystem
class.

Other Scanner Scanner Scanner Scanner methods
include nextDouble(),
nextLine(), nextBoolean,
hasNextInt().
hasNextline().

import java.math.BigInteger;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.BufferedReader;

// omitted definition of the factorial method

public static void main(String[] args) {

BufferedReader in =

new BufferedReader(

new InputStreamReader(System.in));

String line = "";

System.out.print("Enter a positive integer: ");

try {

line = in.readLine();

} catch (IOException e) {

System.out.println("Could not read input");

}

int n = Integer.parseInt(line);

System.out.println(n + "! = " + factorial(n));

}

}

Think of this as the
"magic incantation" for
getting set up to read
from standard input.

readlinereadlinereadlinereadline() () () () returns the
next line of input as a
String.

Since readline() readline() readline() readline() could
generate an IO Exception,
the try/catch is required.

parseInt() parseInt() parseInt() parseInt() takes a string that represents an integer
and returns the corresponding int value. It is
somewhat similar to Python's int() int() int() int() function.

Using the new Scanner
class is easier than this
approach. But you will
often see the old
approach in other
people's code (including
Mark Weiss' code).

import java.math.BigInteger;

public class Factorial_9_InputErrors {

public static BigInteger factorial(int n) {

if (n < 0)

throw new IllegalArgumentException();

BigInteger prod = BigInteger.ONE;

for (int i = 1; i <= n; i++)

prod = prod.multiply(new BigInteger(i + ""));

return prod;

}

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.print("Enter a nonnegative integer: ");

try {

int n = scanner.nextInt();

System.out.println(n + "! = " + factorial(n));

} catch (InputMismatchException e) {

System.out.println("Argument must be an integer");

} catch (IllegalArgumentException e) {

System.out.println("Argument cannot be negative");

}

}

}

If any exception
gets thrown by
the code in the trytrytrytry
clause, the catchcatchcatchcatch
clauses are tested
in order to find
the first one that
matches the
actual exception
type.

If none match, the
exception is
thrown back to
whatever method
called this one.

If it is never
caught, the
program crashes.

import java.math.BigInteger;

public class Factorial_10_Recursive {

public static final int MAX = 30;

/* Return the factorial of n */

public static BigInteger factorial(int n) {

if (n < 0)

throw new IllegalArgumentException();

if (n == 0)

return BigInteger.ONE;

return new BigInteger(n+ "").multiply(factorial(n-1));

}

public static void main(String[] args) {

for (int i=0; i <= MAX; i++)

System.out.println(i + "! = " + factorial(i));

}

}

Recursive factorial definition:Recursive factorial definition:Recursive factorial definition:Recursive factorial definition:
n! = 1 if n = 0
n! = (n-1)! n if n>0

Recursive basically means:Recursive basically means:Recursive basically means:Recursive basically means:
The method calls itself.

Copyright © 2006 Pearson
Addison-Wesley. All rights
reserved. 1-28

� Write appropriate comments:
◦ Javadoc comments for public fields and methods.

◦ Explanations of anything else that is not obvious.

� Give explanatory variable and method names:
◦ Use name completion in Eclipse, Ctrl-Space, to keep
typing cost low and readability high

� Use local variables and static methods (instead of
fields and non-static methods) where appropriate.
◦ “where appropriate” includes any place where you can’t
explicitly justify doing otherwise.

� Use Ctrl-Shift-F in Eclipse to format your code.

� Let’s start together

