
A COMBINED CORNER AND EDGE DETECTOR

Chris Harris & Mike Stephens

Plessey Research Roke Manor, United Kingdom
© The Plessey Company pic. 1988

Consistency of image edge filtering is of prime importance
for 3D interpretation of image sequences using feature
tracking algorithms. To cater for image regions containing
texture and isolated features, a combined corner and edge
detector based on the local auto-correlation function is
utilised, and it is shown to perform with good consistency
on natural imagery.

INTRODUCTION

The problem we are addressing in Alvey Project MMI149
is that of using computer vision to understand the
unconstrained 3D world, in which the viewed scenes will
in general contain too wide a diversity of objects for top-
down recognition techniques to work. For example, we
desire to obtain an understanding of natural scenes,
containing roads, buildings, trees, bushes, etc., as typified
by the two frames from a sequence illustrated in Figure 1.
The solution to this problem that we are pursuing is to
use a computer vision system based upon motion analysis
of a monocular image sequence from a mobile camera. By
extraction and tracking of image features, representations
of the 3D analogues of these features can be constructed.

To enable explicit tracking of image features to be
performed, the image features must be discrete, and not
form a continuum like texture, or edge pixels (edgels). For
this reason, our earlier work1 has concentrated on the
extraction and tracking of feature-points or corners, since

they are discrete, reliable and meaningful^. However, the
lack of connectivity of feature-points is a major limitation
in our obtaining higher level descriptions, such as surfaces
and objects. We need the richer information that is
available from edges3.

THE EDGE TRACKING PROBLEM

Matching between edge images on a pixel-by-pixel basis
works for stereo, because of the known epi-polar camera
geometry. However for the motion problem, where the
camera motion is unknown, the aperture problem prevents
us from undertaking explicit edgel matching. This could be
overcome by solving for the motion beforehand, but we
are still faced with the task of tracking each individual edge
pixel and estimating its 3D location from, for example,
Kalman Filtering. This approach is unattractive in
comparison with assembling the edgels into edge
segments, and tracking these segments as the features.

Now, the unconstrained imagery we shall be considering
will contain both curved edges and texture of various
scales. Representing edges as a set of straight line
fragments4, and using these as our discrete features will be
inappropriate, since curved lines and texture edges can be
expected to fragment differently on each image of the
sequence, and so be untrackable. Because of ill-
conditioning, the use of parametrised curves (eg. circular
arcs) cannot be expected to provide the solution, especially
with real imagery.

Figure 1. Pair of images from an outdoor sequence.
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Having found fault with the above solutions to the
problem of 3D edge interpretation, we question the
necessity of trying to solve the problem at all! Psycho-
visual experiments (the ambiguity of interpretation in
viewing a rotating bent coat-hanger in silhouette), show
that the problem of 3D interpretation of curved edges may
indeed be effectively insoluble. This problem seldom
occurs in reality because of the existence of small
imperfections and markings on the edge which act as
trackable feature-points.

Although an accurate, explicit 3D representation of a
curving edge may be unobtainable, the connectivity it
provides may be sufficient for many purposes - indeed the
edge connectivity may be of more importance than explicit
3D measurements. Tracked edge connectivity, supplement-
ed by 3D locations of corners and junctions, can provide
both a wire-frame structural representation, and delimited
image regions which can act as putative 3D surfaces.

This leaves us with the problem of performing reliable (ie.
consistent) edge filtering. The state-of-the-art edge filters,
such as5 , are not designed to cope with junctions and
corners, and are reluctant to provide any edge connectivity.
This is illustrated in Figure 2 for the Canny edge operator,
where the above- and below-threshold edgels are represented
respectively in black and grey. Note that in the bushes,
some, but not all, of the edges are readily matchable by
eye. After hysteresis has been undertaken, followed by the
deletion of spurs and short edges, the application of a
junction completion algorithm results in the edges and
junctions shown in Figure 3, edges being shown in grey,
and junctions in black. In the bushes, very few of the
edges are now readily matched. The problem here is that of
edges with responses close to the detection threshold: a
small change in edge strength or in the pixellation causes a
large change in the edge topology. The use of edges to
describe the bush is suspect, and it is perhaps better to
describe it in terms of feature-points alone.

Figure 2. Unlinked Canny edges for the outdoor images

Figure 3. Linked Canny edges for the outdoor images
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The solution to this problem is to attempt to detect both
edges and corners in the image: junctions would then
consist of edges meeting at corners. To pursue this
approach, we shall start from Moravec's corner detector6.

MORAVEC REVISITED

Moravec's corner detector functions by considering a local
window in the image, and determining the average changes
of image intensity that result from shifting the window by
a small amount in various directions. Three cases need to
be considered:

A. If the windowed image patch is flat (ie. approximately
constant in intensity), then all shifts will result in only
a small change;

B. If the window straddles an edge, then a shift along the
edge will result in a small change, but a shift
perpendicular to the edge will result in a large change;

C. If the windowed patch is a corner or isolated point, then
all shifts will result in a large change. A corner can
thus be detected by finding when the minimum change
produced by any of the shifts is large.

We now give a mathematical specification of the above.
Denoting the image intensities by I, the change E produced
by a shift (x,y) is given by:

W:u,v
u,v

where w specifies the image window: it is unity within a
specified rectangular region, and zero elsewhere. The shifts,
(x,y), that are considered comprise {(1,0), (1,1), (0,1),
(-1,1)}. Thus Moravec's corner detector is simply this:
look for local maxima in min{E} above some threshold
value.

c d

Figure 4. Corner detection on a test image

AUTO-CORRELATION DETECTOR

The performance of Moravec's corner detector on a test
image is shown in Figure 4a; for comparison are shown
the results of the Beaudet7 and Kitchen & Rosenfeld**
operators (Figures 4b and 4c respectively). The Moravec
operator suffers from a number of problems; these are
listed below, together with appropriate corrective
measures:

1. The response is anisotropic because only a
discrete set of shifts at every 45 degrees is
considered - all possible small shifts can be covered by
performing an analytic expansion about the shift origin:

,y = +-> wu,v L Ix+u,y+v
u,v

= X w u v [ xX + yY + O(x2,y2) ] 2

u,v

where the first gradients are approximated by

X = I ® ( - 1 , 0 , 1 ) ~dl/dx

Hence, for small shifts, E can be written

E(x,y) = Ax2 + 2Cxy + By2

where
A= X 2 ® w
B = Y 2 ® w
C = (XY)®w

2. The response is noisy because the window is
binary and rectangular - use a smooth circular
window, for example a Gaussian:

wu,v = e xP -(u2+v2)/2(T2

3. The operator responds too readily to edges
because only the minimum of E is taken into
account - reformulate the corner measure to make use of
the variation of E with the direction of shift.

The change, E, for the small shift (x,y) can be concisely
written as

E(x,y) = (x,y)M(x,y)T

where the 2x2 symmetric matrix M is

A C

C B
M =

Note that E is closely related to the local autocorrelation
function, with M describing its shape at the origin
(explicitly, the quadratic terms in the Taylor expansion).
Let a,P be the eigenvalues of M. a and P will be
proportional to the principal curvatures of the local auto-
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correlation function, and form a rotationally invariant
description of M. As before, there are three cases to be
considered:

A. If both curvatures are small, so that the local auto-
correlation function is flat, then the windowed image
region is of approximately constant intensity (ie.
arbitrary shifts of the image patch cause little change in
E);

B. If one curvature is high and the other low, so that the
local auto-correlation function is ridge shaped, then
only shifts along the ridge (ie. along the edge) cause
little change in E: this indicates an edge;

C. If both curvatures are high, so that the local auto-
correlation function is sharply peaked, then shifts in
any direction will increase E: this indicates a corner.

iso-response contours

Figure 5. Auto-correlation principal curvature space-
heavy lines give corner/edge/flat classification,

fine lines are equi-response contours.

Consider the graph of (oc,p) space. An ideal edge will have
a large and P zero (this will be a surface of translation),
but in reality P will merely be small in comparison to a,
due to noise, pixellation and intensity quantisation. A
corner will be indicated by both a and p being large, and a
flat image region by both a and P being small. Since an
increase of image contrast by a factor of p will increase a
and p proportionately by p 2 , then if (a,p) is deemed to
belong in an edge region, then so should (ccp2,pp2), for
positive values of p. Similar considerations apply to
corners. Thus (a,P) space needs to be divided as shown by
the heavy lines in Figure 5.

CORNER/EDGE RESPONSE FUNCTION

Not only do we need corner and edge classification regions,
but also a measure of corner and edge quality or response.
The size of the response will be used to select isolated
corner pixels and to thin the edge pixels.

Let us first consider the measure of corner response, R,
which we require to be a function of a and P alone, on
grounds of rotational invariance. It is attractive to use
Tr(M) and Det(M) in the formulation, as this avoids the
explicit eigenvalue decomposition of M, thus

Tr(M) =a+P = A+B

Det(M) = a p = AB - C 2

Consider the following inspired formulation for the corner
response

R = Det - k Tr2

Contours of constant R are shown by the fine lines in
Figure 5. R is positive in the corner region, negative in
the edge regions, and small in Hit flat region. Note that
increasing the contrast (ie. moving radially away from the

Figure 6. Edge/corner classification for the outdoor images
(grey = corner regions, white = thinned edges).
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Figure 7. Completed edges for the outdoor images
(white = corners, black = edges).

origin) in all cases increases the magnitude of the
response. The flat region is specified by Tr falling below
some selected threshold.

A corner region pixel (ie. one with a positive response) is
selected as a nominated corner pixel if its response is an 8-
way local maximum: corners so detected in the test image
are shown in Figure 4d. Similarly, edge region pixels are
deemed to be edgels if their responses are both negative and
local minima in either the x or y directions, according to
whether the magnitude of the first gradient in the x or y
direction respectively is the larger. This results in thin
edges. The raw edge/corner classification is shown in
Figure 6, with black indicating corner regions, and grey,
the thinned edges.

By applying low and high thresholds, edge hysteresis can
be carried out, and this can enhance the continuity of
edges. These classifications thus result in a 5-level image
comprising: background, two corner classes and two edge
classes. Further processing (similar to junction
completion) will delete edge spurs and short isolated edges,
and bridge short breaks in edges. This results in
continuous thin edges that generally terminate in the
corner regions. The edge terminators are then linked to the
corner pixels residing within the corner regions, to form a
connected edge-vertex graph, as shown in Figure 7. Note
that many of the corners in the bush are unconnected to
edges, as they reside in essentially textural regions.
Although not readily apparent from the Figure, many of
the corners and edges are directly matchable. Further work
remains to be undertaken concerning the junction
completion algorithm, which is currently quite
rudimentary, and in the area of adaptive thresholding.
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