Day 32

- Computer representation of integers
- Integer equality checks succeed
- Representation of floating point numbers
- Floating point equality checks fail
- Finding floating point values
- Max and min
- (Exercises)

Computer Representation of Integers

Integers are stored exactly in the computer.

Uses binary
Sequence of 1's and 0's (on and off)

Ob0001 $=1$ in decimal
0b0010 $=2$ in decimal
0b0011 = 3 in decimal

Computer Representation of Integers

You don't need to know how binary works, just that it is exact for integers.

You will learn more about this later in your ME curriculum.

Integer Equality Checks Succeed

Because integers are stored exactly, checking for equality works fine.

```
clc
clear variables
degrees=[0:10:90];
for i=1:length(degrees)
    if degrees(i)==40
        fprintf('The %1.0fth entry is 40.\n',i);
    end
```

end

Command Window
The 5th entry is 40.

Representation of Floating Point Numbers

Floating point numbers are not stored exactly.
$a=2 / 3$;

Workspace	
Name ~	Value
a	0.6667

a=pi;

Workspace	
Name	Value
Aa	3.1416

ME123 Computer Programming

Representation of Floating Point Numbers

Even simple floating point numbers aren't stored exactly, even though they might appear to be.

$$
a=3 / 10 \text {; }
$$

Workspace	
Name	Value
$\boxplus \mathrm{a}$	0.3000

Floating Point Equality Checks Fail

The equality check with floating point doesn't work:

```
clc
clear variables
fractions=[0:0.1:1];
for i=1:length(fractions)
    if fractions(i) == 3/10
        fprintf('The %1.0fth entry is 0.3.\n',i);
    end
```

end

Nothing prints! Command Window
fx >>

ME123 Computer Programming

Floating Point Equality Checks Fail

Actually, the equality check works occasionally, depending on the number:
clc
clear variables
fractions=[0:0.2:1];
for $i=1$:length (fractions)
if fractions(i) $==6 / 10$ fprintf('The \%1.0fth entry is 0.6. nn^{\prime}, i);
end
end
Command Window
The 4 th entry is 0.6 .
fx >>

Finding Floating Point Values

We use a tolerance (range) to locate floating point values:

```
clc
clear variables
fractions=[0:0.1:1];
tol=1.0e-09;
findit=3/10;
for i=1:length(fractions)
    if (fractions(i) < (findit+tol)) && (fractions(i) > (findit-tol))
        fprintf('The %1.0fth entry is 0.3.\n',i);
    end
end
Command Window
                                The 4th entry is 0.3.
fx>>
```

ME123 Computer Programming

Finding Floating Point Values

```
This code is a bit simpler but does the same
thing:
clc
clear variables
fractions=[0:0.1:1];
tol=1.0e-09;
findit=3/10;
for i=1:length(fractions)
    if abs(fractions(i)-findit) < tol
            fprintf('The %1.0fth entry is 0.3.\n',i);
    end
end
```


Finding Floating Point Values

The find command is the most elegant solution. Check entire vector at once! No loop!
clc
clear variables
fractions=[0:0.1:1];
tol=1.0e-09;
findit=3/10;
i=find(abs (fractions-findit)<tol);
fprintf('The \%1.0fth entry is 0.3. n^{\prime} ', i);

ME123 Computer Programming

Max and Min

Review special case: to locate the index of the largest or smallest entry in a vector, use max or min.

clc

clear variables
$\mathrm{x}=[-2: 0.1: 2]$;
$\mathrm{y}=1-2^{*} \mathrm{x}+\mathrm{x} .{ }^{*} \mathrm{x}+\mathrm{x} .{ }^{*} \mathrm{x} .{ }^{*} \mathrm{x}$;
[miny,min_index] $=\min (y)$;
fprintf('y has a minimum value of $\% 6.4 \mathrm{f}$ at $\mathrm{x}=\% 4.2 \mathrm{f} \backslash \mathrm{n}$ ',miny, $\mathrm{x}(\mathrm{min}$ index))

Command Window
y has a minimum value of 0.3750 at $x=0.50$
$f x \gg$

