
ME123 Computer Programming

Day 23

• (Concept Question)

• Understanding variables in functions

• Using functions to declutter your programs

• Exercises

ME123 Computer Programming

Understanding variables in functions

When writing functions for your programs, it is very important to know how
variables behave when you pass them to a function.

There are two m-files on the course web designed to illustrate how variables
move between a program and a function:

Day23_main.m sends
some variables as

inputs to quad_fcn.m

quad_fcn.m sends some
variable back as outputs

to Day23_main.m

ME123 Computer Programming

Understanding variables in functions

Day23_main.m is shown below. It calls quad_fcn and gives values to 6
different input values.

Where do those values go?

ME123 Computer Programming

Understanding variables in functions

Those values from Day23_main get assigned to the variables that are shown
in the first line of the function:

ME123 Computer Programming

Understanding variables in functions

The function, however, must assign values to the output variables. In this
case, x_vec and y_vec are the output variables. After the function is done,
where do the values of the output variables go?

ME123 Computer Programming

Understanding variables in functions

Those values from the function output get assigned to the variables shown in
the main program.

ME123 Computer Programming

Understanding variables in functions

This passing of the variables back and forth can be seen clearly when you run
the DEBUGGER with a function like this. You can try this on your own as well.

If we set a break point at line 9, run the program and step once to get to line
10, we see the following in the workspace:

NOTE the values we
have in our workspace

right now.

ME123 Computer Programming

Understanding variables in functions

When you press the “Step In” button in the Debugger controls, you will “step”
into the function.

The Debugger then shows its green arrow in the function itself—see the next
slide.

ME123 Computer Programming

Understanding variables in functions

Here is where the Debugger makes its next stop—now in the function:

Now see how all the variables in the
function have values.

Also notice that the variables from
Day23_main do not appear. Their values
have been passed to these variables.

ME123 Computer Programming

Understanding variables in functions

If you continue to press the step button, you will see the function assign
values to the x_vec and y_vec variables—the output variables of the
function:

ME123 Computer Programming

Understanding variables in functions

And when you step back out to the main program, you see that the values of
x_vec and y_vec have been passed to the main program variables, x and y:

Understanding variables in functions

Essentially, you have two separate
MATLAB Workspaces—but variable

values can be passed between them.

ME123 Computer Programming

Using functions to declutter your programs

As an example of using functions to declutter a program, we will
consider some graphics tasks.

If you look up the fill command in the MATLAB help, you will find
that it allows you to draw polygons and fill them in.

You draw a polygon by defining the x and y positions of its vertices.
The x and y positions are stored in vectors.

Let’s consider how we might write a function to draw a square.

ME123 Computer Programming

Using functions to declutter your programs

Our function might have the following structure for inputs:

function [] = Draw_Square(center_location, edge_length, rgb)

where
center_location is a vector with the x,y location of the
center
edge_length is a single value, the edge length of the square

rgb is a vector of 3 values for color—[0 0 0] is black,

[1 1 1] is white. Type doc fill in MATLAB for more details.

ME123 Computer Programming

Using functions to declutter your programs

Here is the function:

function [] = Draw_Square(center_location, edge_length, rgb)

x_lower_left = center_location(1) - edge_length / 2.0;

x_lower_right = center_location(1) + edge_length / 2.0;

x_upper_right = center_location(1) + edge_length / 2.0;

x_upper_left = center_location(1) - edge_length / 2.0;

y_lower_left = center_location(2) - edge_length / 2.0;

y_lower_right = center_location(2) - edge_length / 2.0;

y_upper_right = center_location(2) + edge_length / 2.0;

y_upper_left = center_location(2) + edge_length / 2.0;

x_coor = [x_lower_left x_lower_right x_upper_right x_upper_left];

y_coor = [y_lower_left y_lower_right y_upper_right y_upper_left];

fill(x_coor, y_coor, rgb);

axis equal;

ME123 Computer Programming

Exercises

Exercise 1: Write a main program that will create the chess
board shown here. Make use of the Draw_Square.m function
in your main program.

-1 0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8
Chess, Anyone?

NOTE: The main program
would be significantly
more cluttered if you had
to include all the
Draw_Square.m code.

ME123 Computer Programming

Plotting multiple squares in the same plot

We can plot the 1 × 1 black square in the lower left corner of the
chessboard with the following line of code:

Draw_Square([0.5 0.5], 1, [0 0 0]);

ME123 Computer Programming

Plotting multiple squares in the same plot

We would expect to then plot the white square on the right by simply
adding another Draw_Square function call:

Draw_Square([0.5 0.5], 1, [0 0 0]);

Draw_Square([1.5 0.5], 1, [1 1 1]);

However, the plot of the black
square is wiped out and replaced
with just the white square:

ME123 Computer Programming

Plotting multiple squares in the same plot

Use hold on to draw both squares in the same plot:

hold on

Draw_Square([0.5 0.5], 1, [0 0 0]);

Draw_Square([1.5 0.5], 1, [1 1 1]);

