Day 21

- (Concept Question)
- Special operators
- Using a colon (:)
- Extracting subsets of matrices
- Creating vectors
- Creating matrices
- Element-by-element operations using "."
- (Exercises)

ME123 Computer Programming

Special operators

MATLAB uses special operators to allow shortcuts for matrix and vector operations.

Several things we have done with for loops can be done more easily with the colon operator (:).

We can extract subsets of matrices and vectors and we can create vectors and matrices with ":"

Extracting subsets of matrices

Consider the matrix A below.

The first column has theta in degrees, the second column has cosine of theta, and the third column has sine of theta.

Say we want to create a vector that is just the first column.

| | A $<7 \times 3$ double> | | |
| :--- | ---: | ---: | ---: | ---: |
| | 1 | | |
| 1 | 0 | 2 | 3 |
| 2 | 15 | 0.9659 | 0.2588 |
| 3 | 30 | 0.8660 | 0.5000 |
| 4 | 45 | 0.7071 | 0.7071 |
| 5 | 60 | 0.5000 | 0.8660 |
| 6 | 75 | 0.2588 | 0.9659 |
| 7 | 90 | 0 | 1 |

Extracting subsets of matrices - COLUMNS

We can use a colon to "slice" a column out of a matrix.
For example:
theta = A(:,1);

The variable theta will then be just the first column from A

Extracting subsets of matrices - ROWS

We can also use a colon to "slice" out a row
For example:
theta4 = A(4,:);

The variable theta 4 will then be just the fourth row of A

H $\mathrm{A}<7 \times 3$ double>			
	1	2	3
1	0	1	0
2	15	0.9659	0.2588
3	30	0.8660	0.5000
4	45	0.7071	0.7071
5	60	0.5000	0.8660
6	75	0.2588	0.9659
7	90	0	1

\boxplus theta4 < 1×3 double>			
	1	2	3
1	45	0.7071	0.7071

Extracting subsets of matrices - RANGES

Instead of using a whole row or a whole columns, we can also use a colon to specify ranges.

For example:

$$
\text { Asubset }=A(2: 5,2: 3) \text {; }
$$

Asubset will be rows 2 through 5

	$\mathrm{A}<7 \times 3$ double>		
	1		
1	0	2	3
2	15	0.9659	0.2588
3	30	0.8660	0.5000
4	45	0.7071	0.7071
5	60	0.5000	0.8660
6	75	0.2588	0.9659
7	90	0	1

Creating vectors

We can also use colons to create vectors quickly.
For example:
t = [0:4];

ME123 Computer Programming

Creating vectors

We can add a stepsize when we create vectors also:
For example:

Creating matrices

We can combine vectors that we create this way into a matrix.
This gives us a quick way to create the A matrix that we used as an example today.

Creates a vector, theta, from 0 to

```
1-
2
3-
\(\left.\begin{array}{l|l|}\text { theta }=[0: 15: 90] & ;\end{array} \begin{array}{c}\text { Creates a vector, theta, from } 0 \text { to } \\ 90 \text { with step size of } 15\end{array}\right]\).

This line combines the 3 vectors into a single matrix, A.

ME123 Computer Programming

\section*{Element-by-element operations}

If we want to multiply the elements of two vectors together, we need to use ".*" instead of just "*" for multiplication.

For example:
The ".*" here tells MATLAB to multiply a and b "element by element"
\begin{tabular}{|c|}
\hline The ".*" here \\
tells MATLAB \\
to multiply a \\
and b "element \\
by element" \\
\hline
\end{tabular}
>> \(a=[1: 5]\)
a \(=\)


\section*{Element-by-element operations}

Element by element operations can be used with *, / or ^.
```

