Day 9

- (Concept Question)
- Matrices
- Defining matrices
- Component by component
- Single for loops
- Nested for loops
- Printing matrices
- Reading spreadsheet data as matrices
- Reminder: precedence of operators
- (Exercises)

ME123 Computer Programming

Matrices

Recall: Column vectors have just one column.

$$
\overrightarrow{\text { theta }}=\left[\begin{array}{c}
0 \\
10 \\
20 \\
\vdots \\
90
\end{array}\right] \overrightarrow{\text { sine }}=\left[\begin{array}{c}
0.00 \\
0.17 \\
0.34 \\
\vdots \\
1.00
\end{array}\right] \overrightarrow{\operatorname{cosine}}=\left[\begin{array}{c}
1.00 \\
0.98 \\
0.94 \\
\vdots \\
0.00
\end{array}\right]
$$

Matrices

Matrices have many rows and columns.

$$
\vec{M}=\left[\begin{array}{ccc}
0 & 0.00 & 1.00 \\
10 & 0.17 & 0.98 \\
20 & 0.34 & 0.94 \\
\vdots & \vdots & \vdots \\
90 & 1.00 & 0.00
\end{array}\right]
$$

This matrix is arranged so that the three columns are angle, sine, and cosine.

ME123 Computer Programming

Matrices

You choose how your matrix is arranged. This matrix is arranged so that the three rows are angle, sine, and cosine.

$$
\vec{M}=\left[\begin{array}{ccccc}
0 & 10 & 20 & \ldots & 90 \\
0.00 & 0.17 & 0.34 & \ldots & 1.00 \\
1.00 & 0.98 & 0.94 & \ldots & 0.00
\end{array}\right]
$$

Matrices

We use a standard way of identifying the entries in a matrix.

ME123 Computer Programming

Matrices

Notice that the order of the subscripts matters:
$M_{23} \neq M_{32}$

$$
\vec{M}=\left[\begin{array}{ccccc}
0 & 10 & 20 & \ldots & 90 \\
0.00 & 0.17 & 0.34 & \ldots & 1.00 \\
1.00 & 0.98 & 0.94 & \ldots & 0.00
\end{array}\right]
$$

Defining matrices: component by component

We can define a matrix by typing it into Matlab

Command Window

$$
\left.\begin{array}{l}
\gg A=\left[\begin{array}{lllrrrrrr}
4 & -6 & 2 & -3 ; & 5 & 0 & -1 & 6 ; & 2
\end{array} 111\right.
\end{array}\right]
$$

Defining matrices: component by component

The matrix variable appears in the Workspace.

Defining matrices: component by component

We can also refer to a single value in the matrix

ME123 Computer Programming

Defining matrices: single for loops

We can use for loops to create matrices

```
Day9_inClassExample2.m x
    1- clc
    2- clear variables
    3- column=0;
    4- \squarefor theta=0:10:90
    - column=column+1;
        column=column+1;
        M(2,column) =sind (theta);
        M(3, column) =cosd(theta);
    end
```

This code creates a matrix with angles in the first row, sines in the second row, cosines in the third row.

Defining matrices: single for loops

Day9_inClassExample2.m x

 clc
 - clear variables
 - column=0;
 - \square for theta=0:10:90
column=column +1 ;
$\mathrm{M}(1$, column $)=$ theta;
row 1: angles
-
-
-
- \(M(2\), column \()=\) sind (theta) ; row 2: sines of angles
 \(\mathrm{M}(3, \operatorname{col} u m n)=\operatorname{cosd}(\) theta \()\);
 end
row 3: cosines of angles

ME123 Computer Programming

Defining matrices: single for loops

Day9_inClassExample2.m x
1 - clc
2 - clear variables
3 - column=0;
4
5

theta=0:10:90 column=column+14, $M(1$, column $)=$ theta; M (2, column) =sind (theta); $\mathrm{M}(3, \operatorname{col}$ umn $)=\operatorname{cosd}($ theta) ;

This script uses a recursive assignment for the variable "column" to put the values in the correct columns of the matrix

Defining matrices: nested for loops

Some matrices have a structure that needs a more complicated loop structure in order to generate them:

$$
C=\left[\begin{array}{lll}
2 & 3 & 4 \\
3 & 4 & 5 \\
4 & 5 & 6 \\
5 & 6 & 7
\end{array}\right]
$$

Notice that $C_{i j}=\mathrm{i}+\mathrm{j}$

Defining matrices: nested for loops

We can use nested for loops (one for loop inside another) to generate this type of matrix

```
Day9_inClassExample3.m
|- clc clear variables 
                                    The inner
                                    "column" loop runs
                                    completely for
                                    each value of row
田 \(\mathrm{C}<4 \times 3\) double>
\begin{tabular}{|l|l|l|l|l|}
\hline & 1 & 2 & & 3 \\
\hline 1 & 2 & 3 & 4 \\
\hline 2 & 3 & 4 & 5 \\
\hline 3 & 4 & 5 & 6 \\
\hline 4 & 5 & 6 & 7 \\
\hline\(r\) & & & & \\
\hline
\end{tabular}

\section*{Printing matrices}

\section*{To print a specific value from a matrix, use subscripts to specify row, column}


ME123 Computer Programming

\section*{Printing matrices}

\section*{To print the entire matrix at once, just use the matrix name (no subscripts)}
```

Day9_inClasExample2.m x
clc
clear variables
column=0;
for theta=0:10:90
column=column+1;
M(1, column) =theta;
M(2, column) =sind (theta);
M(3, column) =cosd(theta);
end
fprintf('%6.2f %6.2f %6.2f \n',M);

```
\begin{tabular}{|ccc|}
\hline Command Window & & \\
0.00 & 0.00 & 1.00 \\
10.00 & 0.17 & 0.98 \\
20.00 & 0.34 & 0.94 \\
30.00 & 0.50 & 0.87 \\
40.00 & 0.64 & 0.77 \\
50.00 & 0.77 & 0.64 \\
60.00 & 0.87 & 0.50 \\
70.00 & 0.94 & 0.34 \\
80.00 & 0.98 & 0.17 \\
90.00 & 1.00 & 0.00 \\
\(f \boldsymbol{x} \gg\) & & \\
\hline
\end{tabular}

Notice that Matlab transposed the matrix (traded rows and columns) when it printed!

\section*{Printing matrices}

\section*{To print out the entire matrix as you created it, you must print the transpose.}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Command Window} & \multirow[b]{2}{*}{Now we see} \\
\hline 0.00 & 10.00 & 20.00 & 30.00 & 40.00 & 50.00 & 60.00 & 70.00 & 80.00 & 90.00 & \\
\hline 0.00 & 0.17 & 0.34 & 0.50 & 0.64 & 0.77 & 0.87 & 0.94 & 0.98 & 1.00 & 3 rows an \\
\hline 1.00 & 0.98 & 0.94 & 0.87 & 0.77 & 0.64 & 0.50 & 0.34 & 0.17 & 0.00 & \\
\hline \(f \underline{x} \gg\) & & & & & & & & & & 10 columns \\
\hline
\end{tabular}

ME123 Computer Programming

\section*{Printing matrices}

If you accidentally print the ENTIRE matrix inside the for loop you will get a KOT of output
\begin{tabular}{|rrr|}
\hline \multicolumn{2}{c|}{ Command Window } & \\
\hline 0.00 & 0.00 & 1.00 \\
0.00 & 0.00 & 1.00 \\
10.00 & 0.17 & 0.98 \\
0.00 & 0.00 & 1.00 \\
10.00 & 0.17 & 0.98 \\
20.00 & 0.34 & 0.94 \\
0.00 & 0.00 & 1.00 \\
10.00 & 0.17 & 0.98 \\
20.00 & 0.34 & 0.94 \\
30.00 & 0.50 & 0.87 \\
0.00 & 0.00 & 1.00 \\
10.00 & 0.17 & 0.98 \\
20.00 & 0.34 & 0.94 \\
30.00 & 0.50 & 0.87 \\
40.00 & 0.64 & 0.77 \\
0.00 & 0.00 & 1.00 \\
10.00 & 0.17 & 0.98 \\
20.00 & 0.34 & 0.94 \\
& \(n\) &
\end{tabular}

\section*{Printing matrices}

\section*{If you don't give enough entries in the format you will get strange-looking results}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Dayo.inclastrample2.m x} \\
\hline 1 - & clc \\
\hline 2 - & clear variables \\
\hline \(3-\) & column=0; \\
\hline 4 - & for theta=0:10:90 \\
\hline 5 - & column=column 1 ; \\
\hline 6 - & \(\mathrm{M}(1, \mathrm{column})=\) theta; \\
\hline \(7-\) & \(\mathrm{M}(2, \mathrm{column})=\) sind (theta) ; \\
\hline 8 - & \(\mathrm{m}(3\), column \()=\) cosd (theta) ; \\
\hline \(9-\) & end \\
\hline \multirow[t]{2}{*}{\(10-\)} &  \\
\hline & only 2 places for numbers, but 3 rows in the matrix \\
\hline
\end{tabular}
\begin{tabular}{|rr|}
\hline \multicolumn{2}{|c|}{ Command Window } \\
0.00 & 0.00 \\
1.00 & 10.00 \\
0.17 & 0.98 \\
20.00 & 0.34 \\
0.94 & 30.00 \\
0.50 & 0.87 \\
40.00 & 0.64 \\
0.77 & 50.00 \\
0.77 & 0.64 \\
60.00 & 0.87 \\
0.50 & 70.00 \\
0.94 & 0.34 \\
80.00 & 0.98 \\
0.17 & 90.00 \\
1.00 & 0.00 \\
\(\boldsymbol{f x} \boldsymbol{x >}\) & \\
& \\
&
\end{tabular}

\section*{Reading spreadsheet data as matrices}

Matlab lets you read in Excel spreadsheets.
The data in the spreadsheets is stored as a


\section*{Reading spreadsheet data as matrices}

The 'size' command lets us determine how many rows and columns a matrix has.


ME123 Computer Programming

\section*{Reminder:}

Matlab uses standard precedence of operators

Standard precedence of operators:
1. ()
2. ^
3. */
4. + -

Command Window
New to MATLAB? See resources for Getting Started.
\(\gg 6+4 * 3^{\wedge} 2\)
ans \(=\)

42
\(f_{\boldsymbol{v}} \gg \mid\)```

