Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

Exercises for Day 39

Note: The following exercises are intended as practice for the final exam and will not be submitted for a grade.

Exercise 1. For this problem, create a single program named lastname_P1.m
The differential equation for an object experiencing radiative cooling is

$$
\frac{d T}{d t}=-10^{-9}\left(T^{4}-T_{a}^{4}\right)
$$

Here T is temperature in degrees Kelvin, t is time in seconds, and T_{a} is a constant temperature (also in degrees Kelvin) related to the environment. Assume that $T(0)=400, t$ starts at zero, and $T_{a}=293$. Use Euler's method to find out how many seconds it takes for T to reach 300.

Write your answer in the command window as follows using a variable (that is, do not just look at the result and type it into the fprintf statement):

The time for the object to cool from 400 K to 300 K is 22.74 s

Exercise 2. For this problem, create a single program named lastname_P2.m
(a) We can model predator (y) and prey (x) populations with a set of two coupled differential equations, which we can solve numerically using Euler's method. The Euler's method equations are given by:

$$
\begin{gathered}
x_{n+1}=x_{n}+\Delta t\left(a x_{n}-\alpha x_{n} y_{n}\right) \\
y_{n+1}=y_{n}+\Delta t\left(\gamma x_{n} y_{n}-c y_{n}\right) \\
t_{n+1}=n \cdot \Delta t
\end{gathered}
$$

Here the constant parameters and initial conditions are:

$$
\begin{aligned}
a & =4 \\
\alpha & =1 \\
\gamma & =2 \\
c & =2 \\
x_{1} & =4 \\
y_{1} & =5
\end{aligned}
$$

In the Euler equations x is the prey population in thousands, y is the predator population in thousands, and t is the time in years. Using a time step of $\Delta t=0.001$ years, plot x (dashed red line) and y (solid green line) as a function of time for 8 years. Add a title and axis labels. (See next page for how the plot will look after you also finish part (b) below.)
(b) Now find the first time when $x=y$, that is, the first time when the predator and prey populations are equal. Do not use a loop to find this point. Add a blue circle to your plot to mark this intersection as shown on the next page. Add a legend to the plot.
(c) Write your answer in the command window as follows using a variable (that is, do not just look at the result and type it into the fprintf statement):

The predator and prey populations are equal at $X . X X X$ years

Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

ME 123
Computer Programming

