ME 123

Computer Programming

Exercises for Day 23

Exercise 1. Complete and turn in the chessboard exercise described in the class lecture today. Print out your figure, your top-level program, and your function(s).

<u>Exercise 2</u>. Find your code from Day 11 Exercise 2 that you wrote to compute the roots of a quadratic equation. Modify this program so that the roots of the quadratic are calculated within a function called find_roots. Inputs to the function should be the coefficients a, b, and c (i.e., $ax^2 + bx + c = 0$). Outputs from the function should be x_1 and x_2 (the roots of the equation), so that the calling statement looks like

 $[x1,x2] = find_roots(a,b,c)$

Within your main code, call the function to solve for the roots of the following quadratics:

Equation 1: $10x^2 + 20x + 30 = 0$

Equation 2: $x^2 + 4x + 2 = 0$

Print the answers to a text file using the following format:

The roots of Equation 1 are x1 = X.XX + (X.XX)i and x2 = X.XX + (X.XX)i. The roots of Equation 2 are x1 = X.XX + (X.XX)i and x2 = X.XX + (X.XX)i.

Turn in the text file and the code for your main program and function.

<u>Exercise 3</u>. Get out the latest version of your trajectory program from Day 12 Exercise 4. Modify the program so that the position calculation is made in a function called find_position. Inputs to the function should be V_{launch} (launch speed in m/s, a scalar), θ_{launch} (launch angle in degrees, a scalar), and t (flight time in seconds, a scalar). Outputs from the function should be x_{pos} (horizontal distance in meters measured from the origin, a scalar) and y_{pos} (vertical distance in meters measured from the origin, a scalar) so that the calling statement looks like

[x_pos,y_pos] = find_position(V_launch,theta,t)

Your main code is responsible for

- determining the flight time (in seconds) corresponding to the maximum altitude of the trajectory and printing the result to a text file;
- plotting the two-dimensional trajectory up to the maximum altitude.

Use $V_{\text{launch}} = 80 \text{ m/s}$, $\theta_{\text{launch}} = 50^{\circ}$, and a time step $\Delta t = 0.1$ second in your calculations.

Turn in the text file, the plot, and the code for your main program and function.