ME 123

Computer Programming

Exercises for Day 21

<u>Exercise 1</u>. When a mass-spring-damper system is displaced from its static equilibrium position and released from rest, the system's oscillatory response x(t) over time t is governed by an expression of the form

$$x(t) = x_0 e^{-at} \cos \omega t \,,$$

where x_0 is the initial displacement, a is the rate of decay of the response, and ω is the frequency of oscillation. Let $x_0 = 3$ cm, a = 0.2 1/s, and $\omega = 4$ rad/s. Use ":" to create a time vector starting at 0 s and going to 6 s in steps of 0.01 s, and then compute the system's displacement x(t) over this time range using the "." operator. Plot the displacement as a function of time. Be sure to include good axis labels and a title.

Exercise 2. Consider the function

$$y(x) = \frac{1}{x} + (\sin(x))^2$$
.

Using the ":" operator, create a vector of x values ranging from 1 to 9 in steps of 0.4. Next, use the "." operator to evaluate the function y(x) at every specified x value. Lastly, print your results to a text file as a two-column table. Your table should begin as follows:

x	y(x)
1.0	1.708
1.4	1.685
1.8	1.504
2.2	1.108

Use a single fprintf command to print the values stored in your vectors. (You may use additional fprintf commands to print the table header.)