ROSE-HULMAN INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering

ME 123

Computer Programming

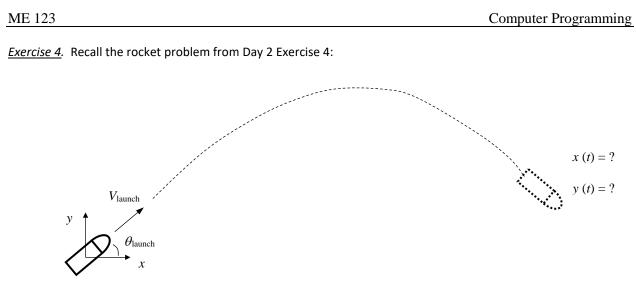
Exercises for Day 12

<u>Exercise 1</u>. Starting from n = 1, use a while loop to keep printing n and doubling n, but stop when n > 100. Keep track of the number of times the loop runs as well as the value of n. Print a table (to a text file) showing the results. Your table should look like the one below:

Counter	n
1	1
2	2
3	4
4	8
5	16
6	32
7	64

<u>Exercise 2</u>. Print (to a text file) a table of the squares of integers, but only while the squares are less than 500. Format the table nicely.

Exercise 3. Print (to a text file) a table of integers, their squares, and the sum of the squares. Use a while loop so that the table ends just after the sum of the squares becomes larger than 700. The first few rows of the table will look like the following:


Integer	Square	Sum of So	uares
1	1	1	
2	4	5	
3	9	14	

(Hint: The last entry for Sum of Squares will be 819.)

(over)

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

Department of Mechanical Engineering

For a launch speed $V_{\rm launch}$ and a launch angle $\theta_{\rm launch}$, the relevant governing equations are

Initial horizontal velocity:	$u_0 = V_{\text{launch}} \cos(\theta_{\text{launch}})$
Initial vertical velocity:	$v_0 = V_{\text{launch}} \sin(\theta_{\text{launch}})$
Instantaneous horizontal displacement:	$x(t) = u_0 t$
Instantaneous vertical displacement:	$y(t) = v_0 t - \frac{1}{2} g t^2$

Plot the trajectory of a rocket with a launch speed of 80 m/s and a launch angle of 50°:

- a) Use a while loop to create a vector of values for x and y, with t going from zero until the rocket hits the ground. (This means that the while loop runs while y is greater than or equal to zero.) Use a time increment of 0.1 s.
- b) Plot the trajectory: plot(x,y).
- c) Turn in the plot along with your script.