Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

Exercises for Day 11

Exercise 1. Write a script that loops from 1 to 10, and prints out different messages depending on the value of the loop variable. The messages should look like the following:

```
1 is less than or equal to 2
2 is less than or equal to 2
3 is bigger than 2 and less than 4
4 is greater than or equal to 4, and less than 7
5 is greater than or equal to 4, and less than 7
6 is greater than or equal to 4, and less than 7
7 is greater than or equal to 7
8 is greater than or equal to 7
9 is greater than or equal to 7
10 is greater than or equal to 7
```

Use a single if block within the loop to accomplish this task. (You can use as many elseif statements as you like.)

Exercise 2. For Day 2 Exercise 2, you computed the roots, x_{1} and x_{2}, of the quadratic equation

$$
a x^{2}+b x+c=0
$$

for specified values of the coefficients a, b, and c using the quadratic formula:

$$
x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \quad x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Recall that, depending on the (real) values of a, b, and c, there are three possible types of solutions for the roots when using the quadratic formula:

1. if the discriminant $b^{2}-4 a c>0$, then x_{1} and x_{2} are real and distinct
2. if the discriminant $b^{2}-4 a c<0$, then x_{1} and x_{2} are complex conjugates
3. if the discriminant $b^{2}-4 a c=0$, then x_{1} and x_{2} are real and repeated

Write a program that does the following:

- Asks the user to input the values for a, b, and c
- Returns the type of roots and their values to the Command Window
- Prints to a text file the input values using the format $X X$. $X X$
- Prints to a text file the corresponding calculation results

Note: When the roots are complex, you must separately print the real and imaginary parts when using fprintf. To extract the real part of a complex number, use the real command. Likewise, imag extracts the imaginary part. For example, if $x=-1-2 * i$, then $\operatorname{real}(x)$ returns -1 and $i m a g(x)$ returns -2 .

Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

ME 123
Computer Programming
When printing the types of roots and their values, use the format specified in the following table:

Case	Output
$b^{2}-4 a c>0$	The roots are real and distinct: $\begin{aligned} & x 1=X X . X X \\ & \text { x2 }=X X . X X \end{aligned}$
$b^{2}-4 a c<0$	The roots are complex conjugates: $\begin{aligned} & x 1=X X . X X+(X X . X X) i \\ & \text { x2 }=X X . X X+(X X . X X) i \end{aligned}$
$b^{2}-4 a c=0$	The roots are real and repeated: $\begin{aligned} & x 1=X X . X X \\ & x 2=X X . X X \end{aligned}$

Run the following three cases:

1. $\quad a=1, b=7$, and $c=11$
2. $\quad a=1, b=6$, and $c=9$
3. $a=1, b=5$, and $c=7$

When printing the inputs and outputs to your text file, instruct MATLAB to append the three cases to the file. You can do this in the fopen command by using ' a ' instead of ' w ':
f_no = fopen('Day11_Ex2.txt', 'a');

If you mess up the text file, simply delete it from your directory and re-run your script to create a new one. Turn in a copy of your final text file with all three cases and your program's code.

Exercise 3. We want to combine two mathematical functions $f(x)$ and $g(x)$ to make a new function $h(x)$. At any given x value, $h(x)$ is equal to the smaller of the two functions.

- Write a script to plot $f(x)$ and $g(x)$ given below for x from -10 to 10 . Use a sufficiently fine increment to give smooth curves.

$$
f(x)=\frac{x+7}{x^{2}+8} \quad g(x)=\frac{4 x}{x^{2}-200}
$$

- Now add a third curve for $h(x)$. Recall that, at any given x value, $h(x)$ is equal to the smaller of the two functions. That is, if $f(x)>g(x)$, then $h(x)=g(x)$. Otherwise, $h(x)=f(x)$. You should be able to tell if $h(x)$ is correct by looking at the plot, since it is the smaller of the two functions you already plotted.
- Use good line types for the curves so you can tell them apart in a black-and-white printout, and add a legend.
- Give your plot good axis labels and a title.
- Turn in the plot and the script.

