Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

ME 123
Computer Programming

Exercises for Day 9

Exercise 1. Type the nested for loop program from the lecture into a script. Use the debugger to complete the table below. (Just turn in this paper, not the script.)
\(\left.$$
\begin{array}{|c|c|c|}\hline \text { When row is ... } & \text { And column is ... } & \text { C is ... } \\
\hline 1 & 1 & {[2]} \\
\hline 1 & 2 & {\left[\begin{array}{ll}2 & 3\end{array}\right]} \\
\hline 1 & 3 & {\left[\begin{array}{lll|}2 & 3 & 4\end{array}
$$\right]}

\hline 2 \& 1 \& {\left[\begin{array}{lll|}2 \& 3 \& 4

3 \& 0 \& 0\end{array}\right]}\end{array}\right]\)| 2 |
| :--- |
| 2 |

Exercise 2. Start with your code from Day 8 Exercise 1. Instead of creating 3 different vectors with 21 entries each, make a 21×3 matrix using a single for loop:

- in the first column, put the x values: $0,0.2,0.4, \ldots, 4$
- in the second column, put the value of y at each x for the given function $y(x)=x^{3}-2 x^{2}$
- in the third column, put the value of the slope $\frac{\mathrm{d} y(x)}{\mathrm{d} x}=3 x^{2}-4 x$ at each x

Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

ME 123
Computer Programming
Make certain that your matrix has 21 rows and 3 columns by inspecting it:

V Variables - M			
1 M X			
\# 21×3 double			
	1	2	3
1	0	0	0
2	0.2000	-0.0720	-0.6800
3	0.4000	-0.2560	-1.1200
4	0.6000	-0.5040	-1.3200
5	0.8000	-0.7680	-1.2800

AFTER the loop, print the entire matrix to a text file as a three-column table, using a single fprintf command. Your table should begin as follows:

\mathbf{x}	$y(x)$	$d y(x) / d x$
---0.0	0.000	0.000
0.0	-0.072	-0.680
0.2	-0.256	-1.120
0.4	-0.504	-1.320

Exercise 3. Create a script to do the following:
a. Read the thermocouple data file (available on course web page) and assign it to a matrix. (The data has voltages in the first column and temperatures in ${ }^{\circ} \mathrm{F}$ in the second column.)
b. Add a new third column to that existing matrix. The third column should contain the temperature readings converted to degrees Celsius:

$$
T\left({ }^{\circ} \mathrm{C}\right)=\frac{T\left({ }^{\circ} \mathrm{F}\right)-32}{1.8}
$$

c. Print to a text file a table containing some of the values. Write out rows 10, 20, 30, \ldots until the end of the matrix is reached. The start of your table should look like the following:

Potential (Volts)	Temperature (deg. F)	Temperature (deg. C)
