Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

Exercises for Day 6

Exercise 1. Write a MATLAB program that approximates the area under the following increasing acceleration curve:

$$
a(t)=0.2 \exp (2.1 t) \mathrm{m} / \mathrm{s}^{2}
$$

Integrate from $t=0$ seconds to $t=5$ seconds using $N=5$ rectangles. Print your solution nicely (including units) to a text file. (Ans: $1013.5 \mathrm{~m} / \mathrm{s}$)

Exercise 2. Now make your program more general: set the number of rectangles as a variable near the beginning of your code. Integrate from $t=0$ seconds to $t=5$ seconds using $N=100$ rectangles. Print your solution nicely to a text file (including the value of N and the velocity with units). (Ans: $3280.1 \mathrm{~m} / \mathrm{s}$)

Don't forget to change the value of the time step Δt in your code so that the integral still goes from $t=0$ seconds to $t=5$ seconds. You can do this by writing a line in your code that calculates Δt in terms of N.

Exercise 3. Since we chose a known function, we can figure out the analytical value of the change in velocity from $t=0$ seconds to $t=5$ seconds, and it is $3458.5 \mathrm{~m} / \mathrm{s}$. Keep changing N by factors of 10 in your script from Exercise 2 until the result matches the analytical value to all 5 significant digits. For this problem, just turn in your text file since the script is basically the same as for Exercise 2.

