Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

Exercises for Day 5

Exercise 1. Using a for loop and a recursive assignment, write a script to calculate the value of y :

$$
y=\sum_{x=0}^{5} x^{2}=0^{2}+1^{2}+2^{2}+3^{2}+4^{2}+5^{2}
$$

Have your program print the final result to a file with appropriate words. (The answer is $y=55$.)

Exercise 2. Using a for loop and a recursive assignment, write a script to compute the sum

$$
\sum_{x=1}^{20} \frac{1}{2^{x}}=\frac{1}{2^{1}}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{20}}
$$

Your program must print out a table that documents the calculation. The first few lines of the table will look like the following:

\mathbf{x}	$1 / 2^{\wedge} \mathbf{x}$	Sum
$-------0-0$	0.500000	
1	0.500000	0.750000
2	0.250000	0.875000

If you have performed the calculation correctly, then you will notice that the sum converges to 1 as you approach $x=20$. Make sure your headings and numbers line up properly, and that you have the correct number of decimal places. Print the table to a text file.

Exercise 3. Using a for loop and a recursive assignment, write a script to produce a table of the sum of the square roots of all positive integers that are divisible by 7 and less than 100. Using the following format, your code must print out a table that documents the calculation. The first few lines of the table will look like the following:

integer	square root	sum
-------	----------	-------
7	2.6458	2.6458
14	3.7417	6.3874
21	4.5826	10.9700

Again, make sure your headings and numbers line up properly, and that you have the correct number of decimal places. Print the table to a text file.

Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

ME 123
Computer Programming
Exercise 4. The factorial of a positive integer n is defined by

$$
\operatorname{factorial}(n)=n!=1 \times 2 \times 3 \times \cdots \times(n-1) \times(n)
$$

Using a for loop and a recursive assignment, write a script to compute 16! Your script must print out a table that documents the calculation. The first few lines of the table will look like the following:

Again, make sure your headings and numbers line up properly, and that you have the correct number of decimal places. Print the table to a text file.

