Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

Exercises for Day 4

Exercise 1. Using a for loop, print a table of the cubes of integers to a text file. Have the integers go from 1 to 10. When you are done, your table should look like the one below on the right.

Notice the following:

Cubes of	Integers
Integer	Cube
1	1
2	8
3	27
4	64
5	125
6	216
7	343
8	512
9	729
10	1000

Exercise 2. Write a script to convert the temperature range from $-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ into the Fahrenheit scale, at $4^{\circ} \mathrm{C}$ increments, using the conversion equation

$$
T\left({ }^{\circ} \mathrm{F}\right)=1.8 \cdot T\left({ }^{\circ} \mathrm{C}\right)+32
$$

Print the results to a text file using the following format:

Make sure your headings and numbers line up properly.

Exercise 3. Start this problem from your Day 3 Exercise 2 program. By adding a loop, print to a text file a table containing the two-dimensional rocket trajectory. Use a start time of 0 seconds, a time increment of 0.5 seconds, and an end time of 12 seconds. The beginning of the table should look like this:

Rocket Trajectory			
Time(s)	x-position (m)	y-position (m)	y-velocity (m/s)
0.0	0.0	0.0	53.6
0.5	22.5	25.6	48.7
1.0	45.0	48.7	43.8

Once again, make sure that your columns are nicely aligned.
After you print this table out, underline (by hand) the data row that is closest to the maximum altitude.

