Exam 2 -- Written Portion

NAME
SECTION NUMBER
CAMPUS MAILBOX NUMBER
EMAIL ADDRESS @rose-hulman.edu

Short Answer	$/ 50$
Coding Problem	$/ 50$
Total	$/ 100$

Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

ME123

All short answer problems have equal weight

PROBLEM 1

Suppose that we take a bar (helicopter blade) and spin it around with a motor. At first, the blade is stationary, and as we apply a motor torque the blade travels faster and faster. The motor needs to overcome the inertia of the blade, and the drag due to the air. When all of this information is collected in a differential equation for the angular velocity of the blade, we have

$$
\frac{d \omega}{d t}=\frac{T_{m}}{I}-\frac{k}{I} \omega^{2} \quad \omega(0)=0
$$

where

$$
\begin{array}{ll}
\omega & =\text { Angular velocity of blade (rad/s) } \\
T_{m} & =\text { Motor torque } \\
I & =\text { Rotational inertial of blade } \\
k & =\text { Net air drag coefficient }
\end{array}
$$

In the space below, write the Euler formula that you could use to solve this problem. For full credit, use " n " as the index and Δt as your interval. Express your answer in the form $\omega_{n+1}=\ldots$

PROBLEM 2

What is the value of a after this program scrap runs?

```
clear variables
b=6;
if (b < 3)
    a=3;
elseif (b < 5)
    a=5;
end
```

a. 0
b. 3
c. 5
d. It is not defined.
e. None of the above (Explain)

Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

ME123
Comp Apps I

PROBLEM 3

The program below is supposed to create an array of x values that start at zero and then grow larger. However, there is a line missing and Matlab says:

```
??? Undefined function or method 'x' for input arguments of type
'double'.
Error in ==> written at 7
while (x(n,1) < xmax)
```

Add the missing line to the code so that it will run correctly:

```
clc
clear variables
xmax=10;
dx=2;
```

$\mathrm{n}=1$;
while ($x(n, 1)<x \max)$
$\mathrm{n}=\mathrm{n}+1$;
$x(n, 1)=x(n-1,1)+d x \wedge n ;$
end

Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

ME123
Comp Apps I

PROBLEM 4

Consider the differential equation for the draining of a tank:

$$
\frac{d h}{d t}=-k \sqrt{h}
$$

with the initial condition:

$$
h(0)=10
$$

The program below is intended to implement this using Euler's method:

```
clc
clear variables
t(1, 1)=0;
h(1, 1)=10;
n=1;
dt=.1;
k=2.3;
while h(n,1) > 0
    h(n+1,1) = h(n,1) - k*sqrt(h)*dt;
    t(n+1,1) = t(n,1) + dt;
        n=n+1;
end
```

However, Matlab says
??? Subscripted assignment dimension mismatch.

Error in ==> written at 9

$$
h(n+1,1)=h(n, 1)-k * s q r t(h) * d t ;
$$

Fix the code so that it will run correctly.

Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

ME123
Comp Apps I

PROBLEM 5

Suppose that we have two files. One is called 'temp.m' and contains the lines

```
clc
clear variables
a=2;
b=3;
y=sumfun(a,b);
fprintf('\n %3i \n',y)
```

The other file is called 'sumfun.m' and contains the lines

```
function z=sumfun(x,y)
clear variables
z=x*x+y;
```

We make sure that both files have been saved, and we run the program temp.m. We get an error that says

```
??? Reference to a cleared variable x.
Error in ==> sumfun at 3
z=x*x+y;
Error in ==> temp at 5
y=sumfun(a,b);
```

Mark the change(s) you would need to make to have the program/function run correctly.

Rose-Hulman Institute of Technology
 Department of Mechanical Engineering

ME123
Comp Apps I

Exam 2

Separate your code into two m-files. Your top level code must be called (all lower case)
lastname_main.m
while the function must be called

```
lastname_traj_exact.m
```

Include your name, section number, and CM number in the comments in the header of each file. There should be no output other than what is asked for.

The exact solution for the trajectory of a projectile without drag has an x and a y component:

$$
\begin{gathered}
x=x_{0}+\left(V_{0} \cos \theta\right) t \\
y=y_{0}+\left(V_{0} \sin \theta\right) t-\frac{1}{2} g t^{2}
\end{gathered}
$$

Suppose we want to find the trajectory up to a certain x-distance $x_{\max }$. Write a function that takes $x_{0}, y_{0}, V_{0}, \theta$, and the maximum distance $x_{\max }$ as inputs. The function should return an array of values for x and y at 0.1 second intervals. Use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Create a main routine that calls the function and plots the trajectory. Use $x_{0}=0 \mathrm{~m}, y_{0}=0 \mathrm{~m}, V_{0}=60 \mathrm{~m} / \mathrm{s}$, $\theta=30^{\circ}$, and $x_{\max }=200 \mathrm{~m}$.

When you are done, post your m-files to the correct folder:

1. Double-click on "My Network Places". If it is not on your desktop, look in your start menu.
2. Double-click on "[DFS] Root". Not [AFS] Root.
3. Log in with your email address and password.
4. Double-click on Academic Affairs.
5. Double-click on ME.
6. Double-click on ME123.
7. Double-click on Exams.
8. Double-click on the folder with your section number.
9. Copy and paste your m-file to this folder.
