Chapter 6 - Consenvation of Angular Momentum

1. Define, explain, compare and contrast the following terms and concepts:

Motion of a rigid body
Rectilinear translation vs. Curvilinear translation
Rotation about a fixed axis
General motion
Rotational motion
Angular position: θ [radians]
Angular velocity: ω [radians/second]
Angular acceleration: α [radians/(seconds) ${ }^{2}$]

Angular momentum about origin O
angular momentum about the origin O for a particle: $\mathbf{L}_{o}=\mathbf{r} \times m \mathbf{V}$
specific angular momentum about the origin $O: \mathbf{l}_{O}=\mathbf{r} \times \mathrm{V}$
where \mathbf{r} is the position vector with respect to the origin O
right-hand rule sign convention
vector nature of angular momentum
units of angular momentum ($\mathrm{N} \cdot \mathrm{m} \cdot \mathrm{s}$, lbf $\cdot \mathrm{ft} \cdot \mathrm{s}$)

Application of Accounting Principle for Angular Momentum

rate of accumulation of angular momentum with the system
amount of angular momentum about origin $O: \quad \mathbf{L}_{o, \text { sys }}=\int_{\forall_{\text {sys }}}(\mathbf{r} \times \mathbf{V}) \rho d V$
mass moment of inertia about a single axis:

$$
I_{G}=\int_{T_{\mathrm{sys}}} r^{2} \rho d V
$$

relation between mass moment of inertia, angular momentum, and angular velocity
transport rate of angular momentum across system boundaries
transport with forces torques or moments of an external force about origin $O: \sum \mathbf{r} \times \mathbf{F}_{e x t}$ torque or moment of a couple: \mathbf{M}_{o}
mass transport of angular momentum about the $O: \quad \sum \dot{m}(\mathbf{r} \times \mathbf{V})_{i n}-\sum \dot{m}(\mathbf{r} \times \mathbf{V})_{\text {out }}$
generation/consumption of angular momentum within the system
Empirical Result $=====>$ Angular momentum is conserved!

Conservation of Angular Momentum (about the origin O)

Angular Impulse
SPECIAL CASE: Plane, Translational Motion of a Closed, Rigid System
angular momentum about origin $O: \quad L_{o, \text { sys }}=\mathbf{r}_{G} \times m \mathbf{V}_{G}$
where $\quad \mathbf{r}_{G}=$ the position vector of the center of mass with respect to the origin. $\mathbf{V}_{G}=$ the velocity of the center of mass.

Conservation of Angular Momentum:

$$
\begin{array}{r}
\frac{d \mathbf{L}_{o, \text { sys }}}{d t}=\sum \mathbf{r} \times \mathbf{F}_{e x t}+\sum \mathbf{M}_{o} \\
\frac{d}{d t}\left(\mathbf{r}_{G} \times m \mathbf{V}_{G}\right)=\sum \mathbf{r} \times \mathbf{F}_{e x t}+\sum \mathbf{M}_{o} \\
\underbrace{\left.\frac{d \mathbf{r}_{G}}{d t} \times \mathbf{V}_{G}\right]}_{\text {since } \mathbf{V}_{G} \times \mathbf{V}_{G}=0}+\left[\mathbf{r}_{G} \times m \frac{d \mathbf{V}_{G}}{d t}\right]=\sum \mathbf{r} \times \mathbf{F}_{e x t}+\sum \mathbf{M}_{o} \\
\mathbf{r}_{G} \times m \frac{d \mathbf{V}_{G}}{d t}=\sum \mathbf{r} \times \mathbf{F}_{e x t}+\sum \mathbf{M}_{o}
\end{array}
$$

where
$\mathbf{r}=$ the position vector with respect to the origin.
$\mathbf{r}_{G}=$ the position vector of the center of mass with respect to the origin.
2. Apply conservation of angular momentum to solve problems involving
(1) steady-state open or closed systems,
(2) static (stationary) closed system,
(3) closed, stationary, rigid-body systems,
(4) translating, closed, rigid body systems, i.e. systems with $\omega=0$ and $\alpha=0$.
(See item number 2 on the linear momentum objective page to see necessary steps.)

