Name: \qquad CM Box: \qquad
Circle your section:
Lui - 01
Lui - 02
Mech - 07

ES 202
Fluid \& Thermal Systems
Examination III
February 12, 2007

Problem	Score
1	$/ 50$
2	$/ 25$
3	$/ 25$
Total	$/ 100$

Clearly show all work for credit.

Open TABLE ONLY

One side of an 8.5 " $\times 11$ " equation sheet is allowed.
Laptops allowed
No EES allowed
Please hand in your equation sheet with your exam.

Problem 1 (50 points)

(a) Complete the table of thermodynamic property information shown below for Water. Skip the shaded boxes. You are encouraged to use the blank space on this page and the next as work space.
Numerical answers should be provided with an accuracy of at least 4-significant figures. (Roundoff can get you in trouble!)

Please use the following abbreviations as required:
$\mathrm{CL}=$ compressed (subcooled) liquid
NA $\quad=$ not applicable
SL = saturated liquid
INSUF = insufficient information
SM = saturated two-phase mixture
SV = saturated vapor
SHV = superheated vapor

State	Pressure $P(\mathrm{MPa})$	Temperature $T\left({ }^{\circ} \mathrm{C}\right)$	Quality, x	Specific Volume $v\left(\mathrm{~m}^{3} / \mathrm{kg}\right)$	Specific Enthalpy $h(\mathrm{~kJ} / \mathrm{kg})$	Phase
1	250				SV	
2		250	0.70			
3	3.0	250				
4	3.0					
5	3.0	100			5000	
6	3.0					

State 1:

State 2:

State 3:

State 4:

State 5:

State 6:
(b) On the following $P-v$ diagram and $T-v$ diagram,
i. Carefully sketch the 3.0 MPa isobar and the $250^{\circ} \mathrm{C}$ isotherm on both diagrams.
ii. Carefully locate all six states (1-6) from Problem 1 (a). Take care to correctly locate the states relative to the saturation curves and the appropriate isotherm and isobar.

Problem 2 (25 points)

Saturated Refrigerant-134A with a quality of 30% is throttled through a valve from 400 kPa to 100 kPa .

a) Determine the quality at the valve exit.
b) Determine the entropy generation per unit mass flow across the valve, in $\mathrm{J} / \mathrm{kg}-\mathrm{K}$.

Clearly show all your work and logic for FULL credit! Do NOT just substitute numbers into a special form of any conservation and accounting principles.

Problem 3 (25 points)

$0.2 \mathrm{~m}^{3}$ of air is compressed rapidly in a piston-cylinder device from room conditions ($P_{1}=100 \mathrm{kPa}$, $T_{1}=300 \mathrm{~K}$) to 8 MPa and 1100 K . The compression happens so fast that it can be modeled by an adiabatic process.

a) Determine the final volume of air, in cm^{3}.
b) Determine the work done on the air during the compression, in kJ .
c) Determine the entropy generation during the compression, in J / K.

Clearly show all your work and logic for FULL credit! Do NOT just substitute numbers into a special form of any conservation and accounting principles.

