Name \qquad CM \qquad
$\begin{array}{lll}\text { Instructor/Section (Circle one): } & \text { Richards -8 } & \text { Richards - } 9 \\ & \text { Mayhew - } 8 & \text { Mayhew - } 9\end{array}$

ES202

Examination III

February 9, 2005

Problem	Points	Score
1	40	
2	60	
Total	100	

Show all work for full credit.
One equation/notes page allowed (1 side, $8-1 / 2 \times 11$ sheet).
Laptops allowed but no pre-prepared worksheets, etc.

Problem 1 (40 points)

A siphon is used to drain a hot tub located on the roof of a building that is 30 m high. The siphon tube is suspended 2 m above the top of the water level in the hot tub and extends down to a lower floor (see figure). The diameter of the siphon tube is 3 cm .
Assume NO LOSSES of mechanical energy; water temperature is uniform at $35^{\circ} \mathrm{C}\left[\rho_{\text {water }}=994 \mathrm{~kg} / \mathrm{m}^{3}\right]$ and atmospheric pressure is 100 kPa
(a) When the siphon is operating how are the following pressures related. Fill in the blank with >, =, < or X meaning cannot determine with given information.
(1) P_{2}
(2) P_{3}
(3) P_{4}
(4) Cannot determine with given information
(b) Find h that produces a flow rate of 0.0087
$\mathrm{m}^{3} / \mathrm{sec}$. (Assume the water stays a liquid throughout the process.)
(c) Determine the pressure at Point 2, in kPa .
(d) The water temperature is $35^{\circ} \mathrm{C}$ and will "boil" at a pressure of 5.628 kPa . Will the water boil anywhere during
 the draining process at this flow rate? Support your answer.

Problem 2 (60 points)
A water fountain is installed at a remote location by attaching a $20-\mathrm{mm}$-diameter cast iron pipe directly to a water main through which water is flowing at $20^{\circ} \mathrm{C}$. The entrance to the cast iron pipe is sharp-edged, and the $20-\mathrm{m}$-long piping system involves three 90° miter bends without vanes, a fully-open gate valve, and an angle valve with $K_{L}=$ 5 when fully open. The elevation difference between the supply pipe and the fountain is negligible.

Water properties @ $20^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \rho=998 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mu=1.002 \times 10^{-3} \mathrm{~kg} /(\mathrm{m}-\mathrm{s}) \\
& c_{\mathrm{p}}=4.182 \mathrm{~kJ} /(\mathrm{kg}-\mathrm{K}) \\
& P_{\mathrm{sat}}=2.339 \mathrm{kPa}
\end{aligned}
$$

Determine the water main pressure that is required to produce a water velocity of $5 \mathrm{~m} / \mathrm{s}$ in the cast iron pipe.

