Name: \qquad CM Box: \qquad
Circle your section:
Sanders - 05
Sanders - 06
Lui - 07
Lui - 08

ES 202

Fluid \& Thermal Systems
Examination III
February 9, 2005

Problem	Score
1	$/ 35$
2	$/ 65$
Total	$/ 100$

Show all work for credit One page of equation sheet allowed

Laptops allowed

Problem 1 (35 points)

a) In the ABSENCE of fluid friction, which one of the following statements is correct?
i. $\quad h_{1}>h_{2}$
ii. $\quad h_{1}=h_{2}$
iii. $\quad h_{1}<h_{2}$
iv. indeterminate

b) Consider the same set up as Part (a) but fluid friction is PRESENT, which one of the following statements is correct?
i. $\quad h_{1}>h_{2}$
ii. $\quad h_{1}=h_{2}$
iii. $\quad h_{1}<h_{2}$
iv. indeterminate
c) In the ABSENCE of fluid friction, which one of the following statements is correct?
i. $\quad h_{1}>h_{2}$
ii. $\quad h_{1}=h_{2}$
iii. $\quad h_{1}<h_{2}$
iv. indeterminate

d) Consider the same set up as Part (c) but fluid friction is PRESENT, which one of the following statements is correct?
i. $\quad h_{1}>h_{2}$
ii. $\quad h_{1}=h_{2}$
iii. $\quad h_{1}<h_{2}$
iv. indeterminate
e) In the ABSENCE of fluid friction, which one of the following statements is correct?
i. $\quad h_{1}>h_{2}$
ii. $\quad h_{1}=h_{2}$
iii. $\quad h_{1}<h_{2}$
iv. indeterminate

f) Consider the same set up as Part (e) but fluid friction is PRESENT, which one of the following statements is correct?
i. $\quad h_{1}>h_{2}$
ii. $\quad h_{1}=h_{2}$
iii. $\quad h_{1}<h_{2}$
iv. indeterminate
g) Regarding the jet exit plane pressure, which one of the following statements is correct?
i. $\quad P_{\text {jet } 1}>P_{\text {jet } 2}$
ii. $\quad P_{\text {jet } 1}=P_{\text {jet } 2}$
iii. $\quad P_{\text {jet } 1}<P_{\text {jet } 2}$
iv. indeterminate

Problem 2 (65 points)

Water at $10^{\circ} \mathrm{C}$ flows from a large reservoir as shown through a $5-\mathrm{cm}$ diameter cast iron pipe. Water properties: $\rho=$ $999.7 \mathrm{~kg} / \mathrm{m} 3, \mu=0.001307 \mathrm{~kg} / \mathrm{m}-\mathrm{s}$.

a) For a flow rate of $6 \mathrm{~L} / \mathrm{sec}$, find the elevation z_{1}.
b) We wish to DOUBLE the flow by adding a pump in the 5 -cm diameter pipe. Assume that the non-dimensional loss coefficients (friction factor, minor loss coefficient) do NOT change, how much pump power is required to deliver the desired flow rate?

