Name: $\qquad$ CM Box: $\qquad$
Circle your section:
Sanders - 05
Sanders - 06
Lui - 07
Lui - 08

ES 202
Fluid \& Thermal Systems

> Examination II
> January 24, 2005

| Problem | Score |
| :---: | :---: |
| 1 | $/ 34$ |
| 2 | $/ 66$ |
| Total | $/ 100$ |

Show all work for credit One page of equation sheet allowed

Laptops allowed

## Problem 1 (34 points)

a) True/False For a vertically submerged surface, the center of pressure is ALWAYS lower than the centroid.
b) True/False The position of the centroid of an object is invariant with the depth of submergence.
c) True/False The position of the center of pressure on an object is invariant with the depth of submergence.
d) The trapezoidal shaped vessel contains a fluid at rest. Circle the correct answer that best describes the gage pressure at the base of the vessel.
i. $\quad P_{\text {base }}>\rho g h$
ii. $\quad P_{\text {base }}=\rho g h$
iii. $\quad P_{\text {base }}<\rho g h$
iv. indeterminate

e) Consider two identical inclined object ( $A B$ ) which is submerged in the same liquid to the same depth at two different orientations. Circle the correct answer that best describes the pressure force on the object $A B$.
i. $\quad F_{\text {pressure, } 1}>F_{\text {pressure, } 2}$
ii. $\quad F_{\text {pressure, 1 }}=F_{\text {pressure, } 2}$
iii. $\quad F_{\text {pressure, } 1}<F_{\text {pressure, } 2}$
iv. indeterminate

f) Consider the same object $(w<h)$ being positioned in two different orientations in a tank of water. Circle the correct answer that best describes the buoyant force on the object.
i. $\quad F_{\text {buoyancy, } 1}>F_{\text {buoyancy, } 2}$
ii. $\quad F_{\text {buoyancy, } 1}=F_{\text {buoyancy, } 2}$
iii. $\quad F_{\text {buoyancy, } 1}<F_{\text {buoyancy, } 2}$
iv. indeterminate

g) Consider the same object described in Part (f). The water level is filled to different heights in this part with $h_{1}<h_{2}$. Circle the correct answer that best describes the buoyant force on the object.
i. $\quad F_{\text {buoyancy, } 1}>F_{\text {buoyancy, } 2}$
ii. $\quad F_{\text {buoyancy, 1 }}=F_{\text {buoyancy, 2 }}$
iii. $F_{\text {buoyancy, } 1}<F_{\text {buoyancy, } 2}$
iv. indeterminate

h) Circle the correct answer that best compares the pressure between two points ( $A$ and $A^{\prime}$ ) on the same level.
i. $\quad P_{A}>P_{A}$,
ii. $\quad P_{A}=P_{A}$,
iii. $\quad P_{A}<P_{A}$,
iv. indeterminate

| pressurized <br> tank |
| :--- |
|  |
|  |

open to atmosphere

mercury

## Problem 2 (66 points)

A thin, $1.5-\mathrm{m}$ wide (into the page), right-angle gate with negligible mass is free to pivot about a frictionless hinge at Point $O$. The horizontal portion of the gate is $2-\mathrm{m}$ long and covers a $30-\mathrm{cm}$ diameter drain pipe which contains air at atmospheric pressure. A $10-\mathrm{kg}$ concrete block ( $\rho=2300 \mathrm{~kg} / \mathrm{m}^{3}$ ) is tied as a hanging weight to the end of the horizontal section. Denote the minimum water depth at which the gate will pivot to allow water to flow into the pipe to be $h_{\text {min. }}$ Develop an equation with $h_{\min }$ as the only unknown. DO NOT SOLVE THE EQUATION. Remark: The lightly shaded area in the figure is filled with water.


