Name:			CM Box:		
Circle your section:					
Sanders – 05	Sanders – 06	Lui – 07	Lui – 08		

ES 202 Fluid & Thermal Systems

Examination I December 17, 2004

Problem	Score	
1	/70	
2	/30	
Total	/100	

Show all work for credit **Open table ONLY** Laptops allowed

Problem 1 (70 points)

- a) Determine the thermodynamic properties for <u>Refrigerant 134a</u> in the unshaded boxes of the table below, <u>up to 4</u> <u>significant figures</u>. You may use the next page as work space. Use the following abbreviations when specifying any verbal description:
 - CL = compressed (subcooled) liquid
 - SL = saturated liquid
 - SM = saturated mixture
 - SV = saturated vapor
 - SHV = superheated vapor

NA = not applicable

INSUF = insufficient information

State	Phase	Pressure, <i>P</i> (kPa)	Temperature, T (°C)	Specific Volume, $v (m^3/kg)$	Specific Enthalpy, <i>h</i> (kJ/kg)	Quality, <i>x</i>
1		100	40			
2	SL	100				
3		100	-26.43			
4		100		0.10		
5		1000	30			
6			30		277.17	
7			30			0.8
8	SV		30			

b) Locate all <u>identifiable</u> states (1 - 8) on the *P*-*v* and *T*-*v* diagrams below.

Problem 2 (30 points)

Given air at two different states:

State 1: $T_1 = 500 \text{ K}, P_1 = 100 \text{ kPa}$ (ideal gas)

State 2: $T_2 = 1500 \text{ K}, P_2 = 1 \text{ MPa}$

a) Is the ideal gas model a reasonable approximation to State 2? Show your reasoning.

b) Determine the following changes in thermodynamic properties using the <u>most accurate</u> method available to you:

i. <u>specific enthalpy</u>: $h_2 - h_1 =$ ____kJ/kg

ii. <u>specific entropy</u>: $s_2 - s_1 =$ _____kJ/kg-K

iii. <u>specific volume</u>: $v_2 - v_1 =$ _____m³/kg